17 research outputs found

    Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by Puccinia triticina

    Get PDF
    Gene expression after leaf rust infection was compared in near-isogenic wheat lines differing in the Lr10 leaf rust resistance gene. RNA from susceptible and resistant plants was used for cDNA library construction. In total, 55 008 ESTs were sequenced from the two libraries, then combined and assembled into 14 268 unigenes for further analysis. Of these ESTs, 89% encoded proteins similar to (E value of < or =10(-5)) characterized or annotated proteins from the NCBI non-redundant database representing diverse molecular functions, cellular localization and biological processes based on gene ontology classification. Further, the unigenes were classified into susceptible and resistant classes based on the EST members assembled from the respective libraries. Several genes from the resistant sample (14-3-3 protein, wali5 protein, actin-depolymerization factor and ADP-ribosylation factor) and the susceptible sample (brown plant hopper resistance protein, caffeic acid O-methyltransferase, pathogenesis-related protein and senescence-associated protein) were selected and their differential expression in the resistant and susceptible samples collected at different time points after leaf rust infection was confirmed by RT-PCR analysis. The molecular pathogenicity of leaf rust in wheat was studied and the EST data generated made a foundation for future studies

    The amphioxus genome and the evolution of the chordate karyotype

    Get PDF
    Lancelets ('amphioxus') are the modern survivors of an ancient chordate lineage, with a fossil record dating back to the Cambrian period. Here we describe the structure and gene content of the highly polymorphic approx520-megabase genome of the Florida lancelet Branchiostoma floridae, and analyse it in the context of chordate evolution. Whole-genome comparisons illuminate the murky relationships among the three chordate groups (tunicates, lancelets and vertebrates), and allow not only reconstruction of the gene complement of the last common chordate ancestor but also partial reconstruction of its genomic organization, as well as a description of two genome-wide duplications and subsequent reorganizations in the vertebrate lineage. These genome-scale events shaped the vertebrate genome and provided additional genetic variation for exploitation during vertebrate evolution

    Comparative genome and transcriptome analyses of the social amoeba Acytostelium subglobosum that accomplishes multicellular development without germ-soma differentiation

    Get PDF
    Background Social amoebae are lower eukaryotes that inhabit the soil. They are characterized by the construction of a starvation-induced multicellular fruiting body with a spore ball and supportive stalk. In most species, the stalk is filled with motile stalk cells, as represented by the model organism Dictyostelium discoideum, whose developmental mechanisms have been well characterized. However, in the genus Acytostelium, the stalk is acellular and all aggregated cells become spores. Phylogenetic analyses have shown that it is not an ancestral genus but has lost the ability to undergo cell differentiation. Results We performed genome and transcriptome analyses of Acytostelium subglobosum and compared our findings to other available dictyostelid genome data. Although A. subglobosum adopts a qualitatively different developmental program from other dictyostelids, its gene repertoire was largely conserved. Yet, families of polyketide synthase and extracellular matrix proteins have not expanded and a serine protease and ABC transporter B family gene, tagA, and a few other developmental genes are missing in the A. subglobosum lineage. Temporal gene expression patterns are astonishingly dissimilar from those of D. discoideum, and only a limited fraction of the ortholog pairs shared the same expression patterns, so that some signaling cascades for development seem to be disabled in A. subglobosum. Conclusions The absence of the ability to undergo cell differentiation in Acytostelium is accompanied by a small change in coding potential and extensive alterations in gene expression patterns

    Motor Unit Abnormalities in Dystonia musculorum Mice

    Get PDF
    Dystonia musculorum (dt) is a mouse inherited sensory neuropathy caused by mutations in the dystonin gene. While the primary pathology lies in the sensory neurons of dt mice, the overt movement disorder suggests motor neurons may also be affected. Here, we report on the contribution of motor neurons to the pathology in dt27J mice. Phenotypic dt27J mice display reduced alpha motor neuron cell number and eccentric alpha motor nuclei in the ventral horn of the lumbar L1 spinal cord region. A dramatic reduction in the total number of motor axons in the ventral root of postnatal day 15 dt27J mice was also evident. Moreover, analysis of the trigeminal nerve of the brainstem showed a 2.4 fold increase in number of degenerating neurons coupled with a decrease in motor neuron number relative to wild type. Aberrant phosphorylation of neurofilaments in the perikaryon region and axonal swellings within the pre-synaptic terminal region of motor neurons were observed. Furthermore, neuromuscular junction staining of dt27J mouse extensor digitorum longus and tibialis anterior muscle fibers showed immature endplates and a significant decrease in axon branching compared to wild type littermates. Muscle atrophy was also observed in dt27J muscle. Ultrastructure analysis revealed amyelinated motor axons in the ventral root of the spinal nerve, suggesting a possible defect in Schwann cells. Finally, behavioral analysis identified defective motor function in dt27J mice. This study reveals neuromuscular defects that likely contribute to the dt27J pathology and identifies a critical role for dystonin outside of sensory neurons

    Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes

    No full text
    International standardization and coordination of the nomenclature of variants of hepatitis C virus (HCV) is increasingly needed as more is discovered about the scale of HCV-related liver disease and important biological and antigenic differences that exist between variants. A group of scientists expert in the field of HCV genetic variability, and those involved in development of HCV sequence databases, the Hepatitis Virus Database (Japan), euHCVdb (France), and Los Alamos (United States), met to re-examine the status of HCV genotype nomenclature, resolve conflicting genotype or subtype names among described variants of HCV, and draw up revised criteria for the assignment of new genotypes as they are discovered in the future. A comprehensive listing of all currently classified variants of HCV incorporates a number of agreed genotype and subtype name reassignments to create consistency in nomenclature. The paper also contains consensus proposals for the classification of new variants into genotypes and subtypes, which recognizes and incorporates new knowledge of HCV genetic diversity and epidemiology. A proposal was made that HCV variants be classified into 6 genotypes (representing the 6 genetic groups defined by phylogenetic analysis). Subtype name assignment will be either confirmed or provisional, depending on the availability of complete or partial nucleotide sequence data, or remain unassigned where fewer than 3 examples of a new subtype have been described. In conclusion, these proposals provide the framework by which the HCV databases store and provide access to data on HCV, which will internationally coordinate the assignment-of-new genotypes and subtypes in the future
    corecore