25 research outputs found

    神経誘導因子Netrin-1は軟骨形成や骨形成においてBMPまたはNogginにより調節される

    Get PDF
    This is the first report describing neurogenic factor of Netrin-1 related to chondrogenesis or osteogenesis in a human cells. Netrin is a morphogenetic factor that induces a growth cone of an axial filament of the nervous system. However, the roles of Netrin in chondrogenesis or osteogenesis are not yet understood. We analyzed the relationship between Netrin and bone morphogenetic protein-2 (BMP-2) in chondrogenesis or osteogenesis, using a human chondrocyte-like cell line (USAC), which also retains multi-potency to differentiate into osteoblasts and adipocytes. Netrin-1 mRNA was decreased in USAC cells, though the expression was increased during osteogenic differentiation at the stage when osteocalcin mRNA were increased by BMP-2. Furthermore, inhibition of Netrin-1 gene increased Cbfa1 mRNA expression, and decreased Sox9 mRNA expression. We also found that Netrin-1was strongly expressed in immature chondrocytes of cartilage-like tissues that were formed in an exo vivo experiment with diffusion chambers. The se findings indicate that Netrin-1 and BMP-2 regulates in the stage dependent process of mesenchymal cell differentiation to chondrocytes or osteoblasts.骨芽細胞または脂肪細胞への分化多能を保持するヒト軟骨細胞様細胞系(USAC)を用い、軟骨形成または骨形成におけるNetrinと骨形成蛋白質-2(BMP-2)との関係を調べた。Netrin-1 mRNAはUSAC細胞中では減少するが、オステオカルシンmRNA濃度がBMPによって上昇する際の骨芽細胞分化時にNetrin-1 mRNAの発現が増加した。Netrin-1遺伝子を阻害すると、Cbfal mRNA発現は増加しSox9 mRNA発現は減少した。またNetrin-1は軟骨様組織の未成熟軟骨細胞において強く発現した。Netrin-1とBMP-2が、間葉細胞の軟骨細胞または骨芽細胞へ分化プロセスを制御すると考えた

    In utero exposure to a low concentration of diesel exhaust affects spontaneous locomotor activity and monoaminergic system in male mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epidemiological studies have suggested that suspended particulate matter (SPM) causes detrimental health effects such as respiratory and cardiovascular diseases, and that diesel exhaust particles from automobiles is a major contributor to SPM. It has been reported that neonatal and adult exposure to diesel exhaust damages the central nervous system (CNS) and induces behavioral alteration. Recently, we have focused on the effects of prenatal exposure to diesel exhaust on the CNS. In this study, we examined the effects of prenatal exposure to low concentration of diesel exhaust on behaviour and the monoaminergic neuron system. Spontaneous locomotor activity (SLA) and monoamine levels in the CNS were assessed.</p> <p>Methods</p> <p>Mice were exposed prenatally to a low concentration of diesel exhaust (171 μg DEP/m<sup>3</sup>) for 8 hours/day on gestational days 2-16. SLA was assessed for 3 days in 4-week-old mice by analysis of the release of temperature-associated infrared rays. At 5 weeks of age, the mice were sacrificed and the brains were used for analysis by high-performance liquid chromatography (HPLC).</p> <p>Results and Discussion</p> <p>Mice exposed to a low concentration of diesel exhaust showed decreased SLA in the first 60 minutes of exposure. Over the entire test period, the mice exposed prenatally to diesel exhaust showed decreased daily SLA compared to that in control mice, and the SLA in each 3 hour period was decreased when the lights were turned on. Neurotransmitter levels, including dopamine and noradrenaline, were increased in the prefrontal cortex (PFC) in the exposure group compared to the control group. The metabolites of dopamine and noradrenaline also increased in the PFC. Neurotransmitter turnover, an index of neuronal activity, of dopamine and noradrenaline was decreased in various regions of the CNS, including the striatum, in the exposure group. The serum corticosterone level was not different between groups. The data suggest that decreased SLA in mice exposed prenatally to diesel exhaust is due to facilitated release of dopamine in the PFC.</p> <p>Conclusions</p> <p>These results indicate that exposure of mice <it>in utero </it>to a low concentration of diesel exhaust decreases SLA and alters the neurochemical monoamine metabolism of several regions of the brain.</p

    日本人成人におけるパノラマX線写真上の下顎皮質骨と海綿骨構造との関係:コーンビームCTによる分析

    Get PDF
    Objectives The purpose of this study was to assess the association between the cortical shape of the mandible, as detected on panoramic radiographs, and trabecular bone structure, as assessed by cone-beam computed tomography (CBCT), in Japanese adults. Methods Panoramic radiographs and CBCT images of the mandibles of 50 subjects (18 men, 32 women), aged 45–86 years, were evaluated. An experienced oral and maxillofacial radiologist categorized the cortical shape of the mandible as detected on panoramic radiographs as normal, mildly to moderately eroded, and severely eroded cortices, respectively. All mandibles were scanned using CBCT. Four bone structure parameters of the basal portion of the mandible were calculated in three dimensions using an image-analysis system: total bone volume (mm3); cortical bone volume fraction (%); trabecular bone volume fraction (%); fractal dimension. One-way analysis of covariance with Bonferroni correction was employed to evaluate differences in the four bone parameters among the three cortical shape groups. Pearson’s correlation coefficient was calculated to examine correlations between age and cortical and trabecular bone volume fractions.Results Progression of cortical bone erosion was significantly associated with increased trabecular bone volume fraction (P\0.001) and increased fractal dimension(P = 0.01). Cortical bone volume fraction decreased significantly with age (P = 0.04). However, trabecular bone volume fraction tended to increase with age (P = 0.06). Conclusions The change in the trabecular bone structure of the mandible may differ from that of the general skeleton in Japanese adults.2013博士(歯学)松本歯科大

    The effect of periodontal treatment for atherosclerotic indicator:cardio ankle vascular index(CAVI)

    Get PDF
    Independent from hyperlipidemia, hypertension, diabetes mellitus, smoking, a classical risk factor for arteriosclerosis, it has been shown that various types of chronic inflammationmay be involved in the development of arteriosclerosis. As a chronic inflammation, theprevalence rate of periodontal disease is reported to be about 80% at the age of 30 to 50years, and about ₉0% at the age of 60ʼs. In this study, cardio ankle vascular index (CAVI),a vascular function test, was measured as an indicator of arteriosclerosis before and aftertreatment of periodontal disease. As a result, it was revealed that CAVI statistically significantly decreased by treatment of periodontal disease. Further studies are needed in th

    Identification of cell cycle–arrested quiescent osteoclast precursors in vivo

    Get PDF
    Osteoclasts are multinucleated cells that resorb bone. Although osteoclasts originate from the monocyte/macrophage lineage, osteoclast precursors are not well characterized in vivo. The relationship between proliferation and differentiation of osteoclast precursors is examined in this study using murine macrophage cultures treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB (RANK) ligand (RANKL). Cell cycle–arrested quiescent osteoclast precursors (QuOPs) were identified as the committed osteoclast precursors in vitro. In vivo experiments show that QuOPs survive for several weeks and differentiate into osteoclasts in response to M-CSF and RANKL. Administration of 5-fluorouracil to mice induces myelosuppression, but QuOPs survive and differentiate into osteoclasts in response to an active vitamin D3 analogue given to those mice. Mononuclear cells expressing c-Fms and RANK but not Ki67 are detected along bone surfaces in the vicinity of osteoblasts in RANKL-deficient mice. These results suggest that QuOPs preexist at the site of osteoclastogenesis and that osteoblasts are important for maintenance of QuOPs

    Mycobacteria Exploit Host Hyaluronan for Efficient Extracellular Replication

    Get PDF
    In spite of the importance of hyaluronan in host protection against infectious organisms in the alveolar spaces, its role in mycobacterial infection is unknown. In a previous study, we found that mycobacteria interact with hyaluronan on lung epithelial cells. Here, we have analyzed the role of hyaluronan after mycobacterial infection was established and found that pathogenic mycobacteria can grow by utilizing hyaluronan as a carbon source. Both mouse and human possess 3 kinds of hyaluronan synthases (HAS), designated HAS1, HAS2, and HAS3. Utilizing individual HAS-transfected cells, we show that HAS1 and HAS3 but not HAS2 support growth of mycobacteria. We found that the major hyaluronan synthase expressed in the lung is HAS1, and that its expression was increased after infection with Mycobacterium tuberculosis. Histochemical analysis demonstrated that hyaluronan profoundly accumulated in the granulomatous legion of the lungs in M. tuberculosis-infected mice and rhesus monkeys that died from tuberculosis. We detected hyaluronidase activity in the lysate of mycobacteria and showed that it was critical for hyaluronan-dependent extracellular growth. Finally, we showed that L-Ascorbic acid 6-hexadecanoate, a hyaluronidase inhibitor, suppressed growth of mycobacteria in vivo. Taken together, our data show that pathogenic mycobacteria exploit an intrinsic host-protective molecule, hyaluronan, to grow in the respiratory tract and demonstrate the potential usefulness of hyaluronidase inhibitors against mycobacterial diseases

    Treatment of OPG-deficient mice with WP9QY, a RANKL-binding peptide, recovers alveolar bone loss by suppressing osteoclastogenesis and enhancing osteoblastogenesis.

    Get PDF
    Osteoblasts express two key molecules for osteoclast differentiation, receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG), a soluble decoy receptor for RANKL. RANKL induces osteoclastogenesis, while OPG inhibits it by blocking the binding of RANKL to RANK, a cellular receptor of RANKL. OPG-deficient (OPG–/–) mice exhibit severe alveolar bone loss with enhanced bone resorption. WP9QY (W9) peptide binds to RANKL and blocks RANKL-induced osteoclastogenesis. W9 is also reported to stimulate bone formation in vivo. Here, we show that treatment with W9 restores alveolar bone loss in OPG–/–mice by suppressing osteoclastogenesis and enhancing osteoblastogenesis. Administration of W9 or risedronate, a bisphosphonate, to OPG–/–mice significantly decreased the osteoclast number in the alveolar bone. Interestingly, treatment with W9, but not risedronate, enhanced Wnt/β-catenin signaling and induced alveolar bone formation in OPG–/–mice. Expression of sclerostin, an inhibitor of Wnt/β-catenin signaling, was significantly lower in tibiae of OPG–/–mice than in wild-type mice. Treatment with risedronate recovered sclerostin expression in OPG–/–mice, while W9 treatment further suppressed sclerostin expression. Histomorphometric analysis confirmed that bone formation-related parameters in OPG–/–mice, such as osteoblast number, osteoblast surface and osteoid surface, were increased by W9 administration but not by risedronate administration. These results suggest that treatment of OPG–/–mice with W9 suppressed osteoclastogenesis by inhibiting RANKL signaling and enhanced osteoblastogenesis by attenuating sclerostin expression in the alveolar bone. Taken together, W9 may be a useful drug to prevent alveolar bone loss in periodontitis

    Rat Neutrophils Prevent the Development of Tuberculosis

    No full text
    To understand the role of neutrophils in the development of rat tuberculosis in vivo, we utilized lipopolysaccharide (LPS)-induced neutrophilia in the lungs. LPS (50 μg/ml) was administered intratracheally to male Fischer rats. Rats were then infected with Mycobacterium tuberculosis by an airborne route. Intratracheal injection of LPS significantly blocked the development of pulmonary granulomas and significantly reduced pulmonary CFU (P < 0.01). LPS treatment with amphotericin B (an LPS inhibitor) or neutralizing anti-rat neutrophil antibody reversed the development of pulmonary lesions. LPS-induced transient neutrophilia prevented early mycobacterial infection. The timing of LPS administration was important. When given intratracheally at least 10 days after aerial infection, LPS did not prevent development of tuberculosis. Neutrophils obtained by bronchoalveolar lavage killed M. tuberculosis cells. These results indicate clearly that neutrophils participate actively in defense against early-phase tuberculosis
    corecore