137 research outputs found

    Free Fermion Cyclic/Symmetric Orbifold CFTs and Entanglement Entropy

    Get PDF
    In this paper we study the properties of two-dimensional CFTs defined by cyclic and symmetric orbifolds of free Dirac fermions, especially by focusing on the partition function and entanglement entropy. Via the bosonization, we construct the twist operators which glue two complex planes to calculate the partition function of Z_2 orbifold CFT on a torus. We also find an expression of Z_N cyclic orbifold in terms of Hecke operators, which provides an explicit relation between the partition functions of cyclic orbifolds and those of symmetric ones. We compute the entanglement entropy and Renyi entropy in cyclic orbifolds on a circle both for finite temperature states and for time-dependent states under quantum quenches. We find that the replica method calculation is highly non-trivial and new because of the contributions from replicas with different boundary conditions. We find the full expression for the Z_2 orbifold and show that the periodicity gets doubled. Finally, we discuss extensions of our results on entanglement entropy to symmetric orbifold CFTs and make a heuristic argument towards holographic CFTs.Comment: 54 pages, 8 figure

    Wedge holography in flat space and celestial holography

    Get PDF
    In this paper, we study codimension two holography in flat spacetimes, based on the idea of the wedge holography. We propose that a region in a d+1 dimensional flat spacetime surrounded by two end of the world branes, which are given by d dimensional hyperbolic spaces, is dual to a conformal field theory (CFT) on a d-1 dimensional sphere. Similarly, we also propose that a d+1 dimensional region in the flat spacetime bounded by two d dimensional de Sitter spaces is holographically dual to a CFT on a d-1 dimensional sphere. Our calculations of the partition function, holographic entanglement entropy and two point functions, support these duality relations and imply that such CFTs are nonunitary. Finally, we glue these two dualities along null surfaces to realize a codimension two holography for a full Minkowski spacetime and discuss a possible connection to the celestial holography

    In vitro characterization of cells derived from chordoma cell line U-CH1 following treatment with X-rays, heavy ions and chemotherapeutic drugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chordoma, a rare cancer, is usually treated with surgery and/or radiation. However, very limited characterizations of chordoma cells are available due to a minimal availability (only two lines validated by now) and the extremely long doubling time. In order to overcome this situation, we successfully derived a cell line with a shorter doubling time from the first validated chordoma line U-CH1 and obtained invaluable cell biological data.</p> <p>Method</p> <p>After isolating a subpopulation of U-CH1 cells with a short doubling time (U-CH1-N), cell growth, cell cycle distribution, DNA content, chromosome number, p53 status, and cell survival were examined after exposure to X-rays, heavy ions, camptothecin, mitomycin C, cisplatin and bleocin. These data were compared with those of HeLa (cervical cancer) and U87-MG (glioblastoma) cells.</p> <p>Results</p> <p>The cell doubling times for HeLa, U87-MG and U-CH1-N were approximately 18 h, 24 h and 3 days respectively. Heavy ion irradiation resulted in more efficient cell killing than x-rays in all three cell lines. Relative biological effectiveness (RBE) at 10% survival for U-CH1-N was about 2.45 for 70 keV/μm carbon and 3.86 for 200 keV/μm iron ions. Of the four chemicals, bleocin showed the most marked cytotoxic effect on U-CH1-N.</p> <p>Conclusion</p> <p>Our data provide the first comprehensive cellular characterization using cells of chordoma origin and furnish the biological basis for successful clinical results of chordoma treatment by heavy ions.</p

    Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus granatum J. Koenig across the Indo-West Pacific Region

    Get PDF
    Xylocarpus granatum J. Koenig is one of the most widespread core component species of mangrove forests in the Indo-West Pacific (IWP) region, and as such is suitable for examining how genetic structure is generated across spatiotemporal scales. We evaluated the genetic structure of this species using maternally inherited chloroplast (cp) and bi-parentally inherited nuclear DNA markers, with samples collected across the species range. Both cp and nuclear DNA showed generally similar patterns, revealing three genetic groups in the Indian Ocean, South China Sea (with Palau), and Oceania, respectively. The genetic diversity of the Oceania group was significantly lower, and the level of population differentiation within the Oceania group was significantly higher, than in the South China Sea group. These results revealed that in addition to the Malay Peninsula—a common land barrier for mangroves—there is a genetic barrier in an oceanic region of the West Pacific that prevents gene flow among populations. Moreover, demographic inference suggested that these patterns were generated in relation to sea level changes during the last glacial period and the emergence of Sahul Shelf which lied northwest of Australia. We propose that the three genetic groups should be considered independent conservation units, and that the Oceania group has a higher conservation priority

    Genetic Structure and Population Demographic History of a Widespread Mangrove Plant Xylocarpus granatum J. Koenig across the Indo-West Pacific Region

    Get PDF
    Xylocarpus granatum J. Koenig is one of the most widespread core component species of mangrove forests in the Indo-West Pacific (IWP) region, and as such is suitable for examining how genetic structure is generated across spatiotemporal scales. We evaluated the genetic structure of this species using maternally inherited chloroplast (cp) and bi-parentally inherited nuclear DNA markers, with samples collected across the species range. Both cp and nuclear DNA showed generally similar patterns, revealing three genetic groups in the Indian Ocean, South China Sea (with Palau), and Oceania, respectively. The genetic diversity of the Oceania group was significantly lower, and the level of population differentiation within the Oceania group was significantly higher, than in the South China Sea group. These results revealed that in addition to the Malay Peninsula—a common land barrier for mangroves—there is a genetic barrier in an oceanic region of the West Pacific that prevents gene flow among populations. Moreover, demographic inference suggested that these patterns were generated in relation to sea level changes during the last glacial period and the emergence of Sahul Shelf which lied northwest of Australia. We propose that the three genetic groups should be considered independent conservation units, and that the Oceania group has a higher conservation priority

    Development and characterization of 27 microsatellite markers for the mangrove fern, Acrostichum aureum (Pteridaceae)

    Get PDF
    Premise of the study: Twenty-seven nuclear microsatellite markers were developed for the mangrove fern,Acrostichum aureum (Pteridaceae), to investigate the genetic structure and demographic history of the only pantropical mangrove plant. Methods and Results: Fifty-six A. aureum individuals from three populations were sampled and genotyped to characterize the 27 loci. The number of alleles and expected heterozygosity ranged from one to 15 and 0.000 to 0.893, respectively. Across the 26 polymorphic loci, the Malaysian population showed much higher levels of polymorphism compared to the other two populations in Guam and Brazil. Cross-amplification tests in the other two species from the genus determined that seven and six loci were amplifiable in A. danaeifolium and A. speciosum, respectively. Conclusions: The 26 polymorphic microsatellite markers will be useful for future studies investigating the genetic structure and demographic history of of A. aureum, which has the widest distributional range of all mangrove plants
    corecore