267 research outputs found

    Electrochemical Behavior of AISI 304SS with Particulate Silica Coating in 0.1 M NaCl

    Get PDF
    This paper presents electrochemical behavior of AISI 304 stainless steel with a silica layer in a stagnant bulk solution of 0.1 M NaCl. Layers composed of densely packed 350 nm diam silica particles were deposited cathodically on stainless steel at a constant voltage by electrophoretic deposition (EPD). Quite smooth and crackfree silica layers less than about 80 ÎĽm in thickness were obtained and the thickness of the layer depended linearly on the deposition time. It is proposed that silica layers deposited by EPD can be used as simulated particulate layers to investigate localized corrosion of corrosion-resistant alloys under atmospheric environments. Electrochemical properties of silica-coated stainless steel samples in 0.1 M NaCl were investigated. The cathodic polarization behavior depended on the thickness of the silica layer; the limiting current density for oxygen reduction reaction decreased with increasing silica layer thickness. The effect of the silica layer on anodic polarization behavior was not remarkable.The work was performed under the Corrosion and Materials Performance Cooperative, DOE Cooperative Agreement Number: DE-FC28-04RW12252

    Abscess Formation of the Round Ligament of the Liver: Report of a Case

    Get PDF
    Abscess formation of the round ligament of the liver is very rare. We report a case of a 70-year-old female with abscess of the round ligament after an endoscopic papillotomy for choledocholithiasis. On the 21st day following papillotomy, abscess formation of the round ligament was found by ultrasonographic examination. Surgical treatment was performed because conservative therapy was not effective. The purulent fluid and necrotic tissue at the round ligament were completely removed. Cultures obtained from the abscess grew Staphylococcus epidermidis, but the mechanism of abscess formation in this case remains unclear.</p

    The dopamine D1 receptor is expressed and induces CREB phosphorylation and MUC5AC expression in human airway epithelium

    Get PDF
    Background Dopamine receptors comprise two subgroups, Gs protein-coupled “D1-like” receptors (D1, D5) and Gi-coupled “D2-like” receptors (D2, D3, D4). In airways, both dopamine D1 and D2 receptors are expressed on airway smooth muscle and regulate airway smooth muscle force. However, functional expression of the dopamine D1 receptor has never been identified on airway epithelium. Activation of Gs-coupled receptors stimulate adenylyl cyclase leading to cyclic AMP (cAMP) production, which is known to induce mucus overproduction through the cAMP response element binding protein (CREB) in airway epithelial cells. We questioned whether the dopamine D1 receptor is expressed on airway epithelium, and whether it promotes CREB phosphorylation and MUC5AC expression. Methods We evaluated the protein expression of the dopamine D1 receptor on native human airway epithelium and three sources of cultured human airway epithelial cells including primary cultured airway epithelial cells, the bronchial epithelial cell line (16HBE14o-), and the pulmonary mucoepidermoid carcinoma cell line (NCI-H292) using immunohistochemistry and immunoblotting. To characterize the stimulation of cAMP through the dopamine D1 receptor, 16HBE14o- cells and NCI-H292 cells were treated with dopamine or the dopamine D1 receptor agonists (SKF38393 or A68930) before cAMP measurements. The phosphorylation of CREB by A68930 in both 16HBE14o- and NCI-H292 cells was measured by immunoblot. The effect of dopamine or A68930 on the expression of MUC5AC mRNA and protein in NCI-H292 cells was evaluated by real-time PCR and immunofluorescence staining, respectively. Results The dopamine D1 receptor protein was detected in native human airway epithelium and three sources of cultured human airway epithelial cells. Dopamine or the dopamine D1-like receptor agonists stimulated cAMP production in 16HBE14o- cells and NCI-H292 cells, which was reversed by the selective dopamine D1-like receptor antagonists (SCH23390 or SCH39166). A68930 significantly increased phosphorylation of CREB in both 16HBE14o- and NCI-H292 cells, which was attenuated by the inhibitors of PKA (H89) and MEK (U0126). Expression of MUC5AC mRNA and protein were also increased by either dopamine or A68930 in NCI-H292 cells. Conclusions These results suggest that the activation of the dopamine D1 receptor on human airway epithelium could induce mucus overproduction, which could worsen airway obstructive symptoms

    Effects of various drugs on platelet functions

    Get PDF
    Background: The hyperfunction and activation of platelets have been strongly implicated in the development and recurrence of arterial occlusive disease, and various antiplatelet drugs are used to treat and prevent such diseases. New antiplatelet drugs and many other drugs have been developed, but some drugs may have adverse effects on platelet functions. Objective: The aim of this study was to establish an evaluation method for evaluating the effect and adverse effect of various drugs on platelet functions. Materials and methods: Human erythroid leukemia (HEL) cells were used after megakaryocytic differentiation with phorbol 12-myristate 13-acetate as an alternative to platelets. Drugs were evaluated by changes in intracellular Ca2+ concentration ([Ca2+]i) mobilization in Fura2-loaded phorbol 12-myristate 13-acetate-induced HEL cells. Aspirin and cilostazol were selected as antiplatelet drugs and ibuprofen and sodium valproate as other drugs. Results: There was a positive correlation between [Ca2+]i and platelet aggregation induced by thrombin. Aspirin (5.6–560 µM) and cilostazol (5–10 µM) significantly inhibited thrombin-induced increases in [Ca2+]i in a concentration-dependent manner. On the other hand, ibuprofen (8–200 µM) and sodium valproate (50–1,000 µg/mL) also significantly inhibited thrombin-induced increases in [Ca2+]i in a concentration-dependent manner. Furthermore, the interaction effects of the simultaneous combined use of aspirin and ibuprofen or sodium valproate were evaluated. When the inhibitory effect of aspirin was higher than that of ibuprofen, the effect of aspirin was reduced, whereas when the inhibitory effect of aspirin was lower than that of ibuprofen, the effect of ibuprofen was reduced. The combination of aspirin and sodium valproate synergistically inhibited thrombin-induced [Ca2+]i. Conclusion: It is possible to induce HEL cells to differentiate into megakaryocytes, which are a useful model for the study of platelet functions, and the quantification of the inhibition of thrombin-induced increases in [Ca2+]i is applicable to the evaluation of the effects of various drugs on platelets

    Could clazosentan, first approved in Japan, improve neurological prognosis after subarachnoid hemorrhage in combination with modified water-electrolyte management?

    Get PDF
    An aneurysmal subarachnoid hemorrhage (aSAH) is a devastating event associated with a high mortality and morbidity rate. Though numerous medications are used to prevent cerebral vasospasm and vasospasm-related cerebral infarction after aSAH, no effective pharmacological treatment has been established. Clazosentan, a highly selective endothelin receptor type A antagonist, was approved for use in Japan in April 2022 based on results of two pivotal randomized, placebo-controlled phase 3 studies (JapicCTI-163369, JapicCTI-163368). These studies indicated that clazosentan significantly reduced the incidence of vasospasm-related morbidity and all-cause mortality after aneurysm coiling and clipping. Clazosentan is thus expected to become a “game changer” for improving the neurological prognosis after aSAH. However, other reports indicate that even when clazosentan or nimodipine are administered for prophylaxis against delayed neurological decline, patients treated with increased colloid administration or hypertonic saline (3% sodium chloride) load exhibit poor functional outcome and higher mortality, suggesting that extra fluid and sodium derived from prophylactic colloid administration contribute to negative outcomes after aSAH. Pharmacological treatments such as clazosentan in addition to perioperative management involving delivery of less water and sodium might be crucial for achieving better outcomes than conventional therapy. Based on a literature review, we present here the future perspectives regarding clazosentan and the necessity for modifying management of the water-electrolyte balance by focusing on endothelin-1 and blood–brain barrier disruption

    Time-dependent and site-dependent morphological changes in rupture-prone arteries : ovariectomized rat intracranial aneurysm model

    Get PDF
    OBJECTIVE The pathogenesis of intracranial aneurysm rupture remains unclear. Because it is difficult to study the time course of human aneurysms and most unruptured aneurysms are stable, animal models are used to investigate the characteristics of intracranial aneurysms. The authors have newly established a rat intracranial aneurysm rupture model that features site-specific ruptured and unruptured aneurysms. In the present study the authors examined the time course of changes in the vascular morphology to clarify the mechanisms leading to rupture. METHODS Ten-week-old female Sprague-Dawley rats were subjected to hemodynamic changes, hypertension, and ovariectomy. Morphological changes in rupture-prone intracranial arteries were examined under a scanning electron microscope and the association with vascular degradation molecules was investigated. RESULTS At 2–6 weeks after aneurysm induction, morphological changes and rupture were mainly observed at the posterior cerebral artery; at 7–12 weeks they were seen at the anterior Willis circle including the anterior communicating artery. No aneurysms at the anterior cerebral artery–olfactory artery bifurcation ruptured, suggesting that the inception of morphological changes is site dependent. On week 6, the messenger RNA level of matrix metalloproteinase–9, interleukin-1β, and the ratio of matrix metalloproteinase–9 to the tissue inhibitor of metalloproteinase–2 was significantly higher at the posterior cerebral artery, but not at the anterior communicating artery, of rats with aneurysms than in sham-operated rats. These findings suggest that aneurysm rupture is attributable to significant morphological changes and an increase in degradation molecules. CONCLUSIONS Time-dependent and site-dependent morphological changes and the level of degradation molecules may be indicative of the vulnerability of aneurysms to rupture
    • …
    corecore