3 research outputs found

    Comparison of Load-Bearing Capacities of 3-Unit Fiber-Reinforced Composite Adhesive Bridges with Different Framework Designs

    Get PDF
    Background: The aim of this study was to investigate and compare the load-bearing capacities of three-unit direct resin-bonded fiber-reinforced composite fixed dental prosthesis with different framework designs.Material/Methods: Sixty mandibular premolar and molar teeth without caries were collected and direct glass fiber-resin fixed FDPs were divided into 6 groups (n=10). Each group was restored via direct technique with different designs. In Group 1, the inlay-retained bridges formed 2 unidirectional FRC frameworks and pontic-reinforced transversal FRC. In Group 2, the inlay-retained bridges were supported by unidirectional lingual and occlusal FRC frameworks. Group 3, had buccal and lingual unidirectional FRC frameworks without the inlay cavities. Group 4 had reinforced inlay cavities and buccal-lingual FRC with unidirectional FRC frameworks. Group 5, had a circular form of fiber reinforcement around cusps in addition to buccal-lingual FRC frameworks. Group 6 had a circular form of fiber reinforcement around cusps with 2 bidirectional FRC frameworks into inlay cavities. All groups were loaded until final fracture using a universal testing machine at a crosshead speed of 1 mm/min.Results: Mean values of the groups were determined with ANOVA and Tukey HSD. When all data were evaluated, Group 6 had the highest load-bearing capacities and revealed significant differences from Group 3 and Group 4. Group 6 had the highest strain (p>0.05). When the fracture patterns were investigated, Group 6 had the durability to sustain fracture propagation within the restoration.Conclusions: The efficiency of fiber reinforcement of the restorations alters not only the amount of fiber, but also the design of the restoration with fibers

    Effect of storage in water and thermocycling on hardness and roughness of resin materials for temporary restorations

    No full text
    PURPOSE: This study evaluated the effect of storage in water and thermocycling on hardness and roughness of resin materials for temporary restorations. MATERIAL AND METHODS: Three acrylic resins (Dencor-De, Duralay-Du, and Vipi Cor-VC) were selected and one composite resin (Opallis-Op) was used as a parameter for comparison. The materials were prepared according to the manufacturers' instructions and were placed in stainless steel moulds (20 mm in diameter and 5 mm thick). Thirty samples of each resin were made and divided into three groups (n = 10) according to the moment of Vickers hardness (VHN) and roughness (Ra) analyses: C (control group): immediately after specimen preparation; Sw: after storage in distilled water at 37 °C for 24 hours; Tc: after thermocycling (3000 cycles; 5-55 °C, 30 seconds dwell time). Data were submitted to 2-way ANOVA followed by Tukey's test (&#945; = 0.05). RESULTS: Op resin had higher surface hardness values (p < 0.0001; 25.4 ± 3.4) than the other ones (De = 4.5 ± 0.6; Du = 5.5 ± 0.4; VC = 6.1 ± 0.9). There was no statistical difference (p > 0.05) in roughness among materials (De = 0.31 ± 0.07; Du = 0.51 ± 0.20; VC = 0.41 ± 0.15; Op = 0.42 ± 0.18). Storage in water did not change hardness and roughness of the tested materials (p > 0.05). There was a significant increase in roughness after thermocycling (p < 0.05), except for material Du, which showed no significant change in roughness in any evaluated period (p = 0.99). CONCLUSION: Thermocycling increased the roughness in most tested materials without affecting hardness, while storage in water had no significant effect in the evaluated properties
    corecore