4 research outputs found

    Regulation of BMP4/Dpp retrotranslocation and signaling by deglycosylation.

    Get PDF
    During endoplasmic reticulum-associated degradation (ERAD), the cytoplasmic enzyme N-glycanase 1 (NGLY1) is proposed to remove N-glycans from misfolded N-glycoproteins after their retrotranslocation from the ER to the cytosol. We previously reported that NGLY1 regulates Drosophila BMP signaling in a tissue-specific manner (Galeone et al., 2017). Here, we establish the Drosophila Dpp and its mouse ortholog BMP4 as biologically relevant targets of NGLY1 and find, unexpectedly, that NGLY1-mediated deglycosylation of misfolded BMP4 is required for its retrotranslocation. Accumulation of misfolded BMP4 in the ER results in ER stress and prompts the ER recruitment of NGLY1. The ER-associated NGLY1 then deglycosylates misfolded BMP4 molecules to promote their retrotranslocation and proteasomal degradation, thereby allowing properly-folded BMP4 molecules to proceed through the secretory pathway and activate signaling in other cells. Our study redefines the role of NGLY1 during ERAD and suggests that impaired BMP4 signaling might underlie some of the NGLY1 deficiency patient phenotypes

    A CRISPR Screen Identifies LAPTM4A and TM9SF Proteins as Glycolipid-Regulating Factors

    No full text
    Summary: Glycosphingolipids (GSLs) are produced by various GSL-synthesizing enzymes, but post-translational regulation of these enzymes is incompletely understood. To address this knowledge disparity, we focused on biosynthesis of globotriaosylceramide (Gb3), the Shiga toxin (STx) receptor, and performed a genome-wide CRISPR/CAS9 knockout screen in HeLa cells using STx1-mediated cytotoxicity. We identified various genes including sphingolipid-related genes and membrane-trafficking genes. In addition, we found two proteins, LAPTM4A and TM9SF2, for which physiological roles remain elusive. Disruption of either LAPTM4A or TM9SF2 genes reduced Gb3 biosynthesis, resulting in accumulation of its precursor, lactosylceramide. Loss of LAPTM4A decreased endogenous Gb3 synthase activity in a post-transcriptional mechanism, whereas loss of TM9SF2 did not affect Gb3 synthase activity but instead disrupted localization of Gb3 synthase. Furthermore, the Gb3-regulating activity of TM9SF2 was conserved in the TM9SF family. These results provide mechanistic insight into the post-translational regulation of the activity and localization of Gb3 synthase. : Molecular Biology; Molecular Mechanism of Behavior; Cell Biology; Functional Aspects of Cell Biology Subject Areas: Molecular Biology, Molecular Mechanism of Behavior, Cell Biology, Functional Aspects of Cell Biolog

    Role of Intracellular Lipid Logistics in the Preferential Usage of Very Long Chain-Ceramides in Glucosylceramide

    No full text
    Ceramide is a common precursor of sphingomyelin (SM) and glycosphingolipids (GSLs) in mammalian cells. Ceramide synthase 2 (CERS2), one of the six ceramide synthase isoforms, is responsible for the synthesis of very long chain fatty acid (C20–26 fatty acids) (VLC)-containing ceramides (VLC-Cer). It is known that the proportion of VLC species in GSLs is higher than that in SM. To address the mechanism of the VLC-preference of GSLs, we used genome editing to establish three HeLa cell mutants that expressed different amounts of CERS2 and compared the acyl chain lengths of SM and GSLs by metabolic labeling experiments. VLC-sphingolipid expression was increased along with that of CERS2, and the proportion of VLC species in glucosylceramide (GlcCer) was higher than that in SM for all expression levels of CERS2. This higher proportion was still maintained even when the proportion of C16-Cer to the total ceramides was increased by disrupting the ceramide transport protein (CERT)-dependent C16-Cer delivery pathway for SM synthesis. On the other hand, merging the Golgi apparatus and the endoplasmic reticulum (ER) by Brefeldin A decreased the proportion of VLC species in GlcCer probably due to higher accessibility of UDP-glucose ceramide glucosyltransferase (UGCG) to C16-rich ceramides. These results suggest the existence of a yet-to-be-identified mechanism rendering VLC-Cer more accessible than C16-Cer to UGCG, which is independent of CERT
    corecore