We prove that the heat kernel associated to the Schr\"odinger type operator
A:=(1+∣x∣α)Δ−∣x∣β satisfies the estimate k(t,x,y)≤c1​eλ0​tec2​t−b1+∣y∣α(∣x∣∣y∣)−2N−1​−4β−α​​e−β−α+22​∣x∣2β−α+2​e−β−α+22​∣y∣2β−α+2​ for
t>0,∣x∣,∣y∣≥1, where c1​,c2​ are positive constants and
b=β+α−2β−α+2​ provided that N>2,α≥2
and β>α−2. We also obtain an estimate of the eigenfunctions of A