124 research outputs found

    SINFONI Observations of Starclusters in Starburst Galaxies

    Full text link
    We have used ESO's new NIR IFS SINFONI during its Science Verification period to observe the central regions of local starburst galaxies. Being Science Verification observations, the aim was two-fold: to demonstrate SINFONI's capabilities while obtaining information on the nature of starclusters in starburst galaxies. The targets chosen include a number of the brighter clusters in NGC1808 and NGC253. Here we present first results.Comment: Submitted to "Adaptive Optics-Assisted Integral-Field Spectroscopy", Rutten R.G.M., Benn C.R., Mendez J., eds., May 2005, La Palma (Spain), New Astr. Re

    NIR spectroscopy of the most massive open cluster in the Galaxy: Westerlund 1

    Full text link
    Using ISAAC/VLT, we have obtained individual spectra of all NIR-bright stars in the central 2'x2' of the cluster Westerlund 1 (Wd 1) with a resolution of R~9000 at a central wavelength of 2.30 micron. This allowed us to determine radial velocities of ten post-main-sequence stars, and from these values a velocity dispersion. Assuming virial equilibrium, the dispersion of sigma=8.4 km/s leads to a total dynamical cluster mass of 1.25x10^5 solar masses, comparable to the photometric mass of the cluster. There is no extra-virial motion which would have to be interpreted as a signature of cluster expansion or dissolution.Comment: To appear in the proceedings of IAU 246: "Dynamical Evolution of Dense Stellar Systems" (E. Vesperini, M. Giersz, A. Sills, eds.

    The azimuthal and radial distributions of HI and H2 in NGC 6946

    Get PDF
    A study was completed of the atomic and molecular components of the ISM in NGC 6946. The distribution of molecular clouds was determined from a fully sampled CO map of the inner disk using the 14-meter telescope of the FCRAO. The distribution of atomic gas was derived from VLA observations at 40" resolution in the D configuration. When comparing the global CO and HI properties with other components of the galaxy, it was found that the azimuthally averaged radial distributions of CO, H-alpha, radio continuum and blue light all exhibit similar roughly exponential falloffs, while the azimuthally averaged HI surface densities vary by only a factor of 2 out to R = 16 kpc. This indicates that while the H-alpha/CO ratio is approximately constant with radius, the CO/HI ratio decreases by a factor of 30 from the center of the galaxy to R = 10 kpc

    Windows in the Milky Way

    Get PDF
    The objectives were twofold: (1) to study the IRAS emission levels in the vicinity of Baade's Window and in other optically transparent regions near the Galactic Center; and (2) to study the IRAS emission levels along sightlines in the Milky Way that exhibit very little CO emission. Tests were attempted to see whether the optically transparent 'windows' near the Galactic center can be identified (as FIR-weak regions) in the IRAS data base; and if so, whether the CO weak regions found elsewhere in the Milky Way represent similarly FIR weak and thus optically transparent sightlines through the Galaxy. The CO weak regions were also targeted in an effort to study the diffuse intercloud dust and its warming by the interstellar radiation field

    ALFA & 3D: integral field spectroscopy with adaptive optics

    Full text link
    One of the most important techniques for astrophysics with adaptive optics is the ability to do spectroscopy at diffraction limited scales. The extreme difficulty of positioning a faint target accurately on a very narrow slit can be avoided by using an integral field unit, which provides the added benefit of full spatial coverage. During 1998, working with ALFA and the 3D integral field spectrometer, we demonstrated the validity of this technique by extracting and distinguishing spectra from binary stars separated by only 0.26". The combination of ALFA & 3D is also ideally suited to imaging distant galaxies or the nuclei of nearby ones, as its field of view can be changed between 1.2"x1.2" and 4"x4", depending on the pixel scale chosen. In this contribution we present new results both on galactic targets, namely young stellar objects, as well as extra-galactic objects including a Seyfert and a starburst nucleus.Comment: SPIE meeting 4007 on Adaptive Optical Systems Technology, March 200

    Confirmation of two extended objects along the line of sight to PKS1830-211 with ESO-VLT adaptive optics imaging

    Full text link
    We report on new high-resolution near-infrared images of the gravitationally lensed radio source PKS1830-211, a quasar at z=2.507. These adaptive optics observations, taken with the Very Large Telescope (VLT), are further improved through image deconvolution. They confirm the presence of a second object along the line of sight to the quasar, in addition to the previously known spiral galaxy. This additional object is clearly extended in our images. However, its faint luminosity does not allow to infer any photometric redshift. If this galaxy is located in the foreground of PKS1830-211, it complicates the modeling of this system and decreases the interest in using PKS1830-211 as a means to determine H0 via the time delay between the two lensed images of the quasar.Comment: Accepted in A&A Letter

    Stellar Dynamics and the implications on the merger evolution in NGC6240

    Full text link
    We report near-infrared integral field spectroscopy of the luminous merging galaxy NGC 6240. Stellar velocities show that the two K-band peaks separated by 1.6arcsec are the central parts of inclined, rotating disk galaxies with equal mass bulges. The dynamical masses of the nuclei are much larger than the stellar mass derived from the K-band light, implying that the progenitor galaxies were galaxies with massive bulges. The K-band light is dominated by red supergiants formed in the two nuclei in starbursts, triggered ~2x10^7 years ago, possibly by the most recent perigalactic approach. Strong feedback effects of a superwind and supernovae are responsible for a short duration burst (~5x10^6 years) which is already decaying. The two galaxies form a prograde-retrograde rotating system and from the stellar velocity field it seems that one of the two interacting galaxies is subject to a prograde encounter. Between the stellar nuclei is a prominent peak of molecular gas (H_2, CO). The stellar velocity dispersion peaks there indicating that the gas has formed a local, self-gravitating concentration decoupled from the stellar gravitational potential. NGC 6240 has previously been reported to fit the paradigm of an elliptical galaxy formed through the merger of two galaxies. This was based on the near-infrared light distribution which follows a r^1/4-law. Our data cast strong doubt on this conclusion: the system is by far not relaxed, rotation plays an important role, as does self-gravitating gas, and the near-infrared light is dominated by young stars.Comment: 34 pages, 11 figures, using AASTEX 5.0rc3.1, paper submitted to the Astrophysical Journal, revised versio
    corecore