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ABSTRACT

KINEMATIC MODELS OF COMETARY COMAE

MAY 1989

LOWELL EVAN TACCONI-GARMAN

B.S., RENSSELAER POLYTECHNIC INSTITUTE

Ph.D., UNIVERSITY OF MASSACHUSETTS

Directed by: Professor F. Peter Schloerb

As a first step towards understanding the kinematics of cometary

comae we have undertaken an analysis of the 18-cm OH lines in comets.

This work builds on past OH excitation and kinematic studies to meld

them into a complete and self-consistent model for a cometary coma. We

model the kinematics via the vectorial formalism and employ the powerful

Monte Carlo technique in an effort to reproduce the high sensitivity, high

spectral resolution 18-cm OH line profiles of Comets Halley, Giacobini-Zinner,

Hartley-Good, Thiele, and Wilson which were obtained at the 43 meter

telescope of the National Radio Astronomy Observatory at Green Bank,

West Virginia. We have applied for the first time a "zeroth order" A-doublet

quenching correction to the 18-cm data and find that we can account for the

long standing UV/radio gas production rate disparity. We have derived gas

expansion velocities and coma anisotropics from observations covering a wide

range of heliocentric distances and gas production rates. The inferred ratio of

dayside gas emission to nightside gas emission for all comets in this study,
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except P/Giacobini-Zinner, is approximately two. This value is consistent with

that derived from in situ observations of the neutral gas in the coma of Comet

Halley and is independent of both gas productivity and heliocentric distance.

For P/Giacobini-Zinner we infer anomalously high gas outflow anisotropics

for which there is no clear explanation. The derived outflow velocities are

consistent with those derived from a variety of other indicators of the coma

expansion velocity and suggest that the gas production of a comet plays a

critical role in determining the coma kinematics for active comets near the sun.

We find, however, that the outflow velocities at large heliocentric distances

are consistently lower than the predictions of one-dimensional coma dynamic

models.
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CHAPTER 1

INTRODUCTION

1.1 Cometary Observations Old and New

Comets have been observed since antiquity. Evidence for this comes

from both verbal and nonverbal records left behind by many cultures. Indeed,

amongst the most complete of these ancient cometary records are those

appearing in the Chin-shu, a history of China's Chin Dynasty (265-460

A.D.) which was compiled in 644 A.D. by the members of the T'ai-ch'ang

(the "Astronomical Bureau")(Clark and Stephenson 1977). These accounts,

however accurate they were, were primarily phenominological in nature with

little insight into the scientific significance of comets. This astronomical

importance eluded humankind, especially in the West, for many centuries

following the writing of the Chin-shu, and as a result, the apparitions of

comets were frequently viewed as omens of disastrous events.

It was Tycho Brahe who began to lift the veil of folklore from comets.

By not finding any sign of diurnal parallax in his carefully taken cometary

position data, he determined that comets were not the atmospheric phenomena

they were believed to be. In fact, his measurements placed the comets beyond

the Moon (Harwit 1981). Some 130 years later, Edmund Halley made a

prediction, based on the then new theory of gravitation, that the comets of

1531, 1607, and 1682 were actually the same comet reappearing. Furthermore,



he forecast the return of that comet for 1759. When Halley's Comet (as it

came to be known) actually did appear in December of 1758, it became clear

that comets were nothing more than celestial bodies obeying the same physical

laws as all other bodies. Thereafter, the mystery and legend surrounding

comets gradually faded (Harwit 1981). (One should note, though, that there

was still enough superstition surrounding comets during the 1973 apparition of

Comet Kohoutek to make a number of charlatans profit from the sales of books

which predicted disasters (Abell 1982)!)

Since the appearance of Halley's Comet in 1758-1759 much progress has

been made in our understanding of comets. Three major breakthroughs in

cometary science came in the 1950's. The first of these was in the study of the

location of comets. Oort (1950) advanced a theory, based on the work of Opik

(1932) and van Woerkom (1948), which entailed a "general cloud" of some 10n

comets at distances of 50,000 to 150,000 A.U. from the sun. He also postulated

that perturbations from passing stars could cause comets in this cloud to enter

the inner solar system. This has since become the most widely accepted theory

on the origin of comets (cf. Bailey, Clube, and Napier 1986). The second

advancement in our understanding of comets is the now generally accepted

"dirty snowball" model for the nucleus of a comet (Whipple 1950, 1951, 1955;

see also Whipple 1976). This model explains, amongst other things, the non-

gravitational motions observed for most comets. The last major contribution

to the study of comets to come from that decade was that of Biermann (1951),
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who suggested that a solar wind was responsible for the morphology and

kinematics of the ion tails of comets. This is now also generally accepted, and

in many ways, the 1950's can be viewed as the decade when modern cometary

science was born.

Since that time many new observational techniques have played ever

increasing roles in determining the nature of comets (for a comprehensive

review of the recent progress in UV and IR cometary astronomy see Spinrad

1987 and references therein). In particular, within the last 10 years or so a

great deal of new and interesting information on the physical processes and

kinematics of cometary comae has come from the theoretical and observational

work on the radio lines of OH. This new information by itself is interesting

and important in its applications to the problem of molecular abundances in

the coma. Almost all ground based cometary molecular abundance studies rely

on kinematic information derived from models of the comae. Therefore, it is

the purpose of this thesis to build on the past observational and theoretical

studies and derive a consistent kinematic model for the cometary coma.

The past work on which this thesis is based breaks naturally into two

categories, studies of the excitation of the OH molecules in comets and studies

of the kinematics of the coma gas. These two subjects are taken up in the

following two sections. In Section 1.4 we discuss the impetus for this project

and give an outline of the problem.

3



1.2 Molecular Excitation in Comets

The study of the excitation of molecules in the comae of comets is

not a new one. Early this century astronomers began to try to understand

the mechanism responsible for producing the observed molecular lines. For

example, Fowler (1910) ascribed the illumination of the coma and tail of

a comet to "negatively charged particles issuing either from the head of a

comet or from the Sun". Another method of illuminating the tail of a comet

was suggested by Deslandres (1909). He noticed the similarity between the

spectrum of Comet Morehouse (1908 III) and a terrestrial auroral display

and inferred from this that both phenomena could be explained if the sun

emitted "kathode [tie.] rays." Lastly, Newall (as cited in Fowler 1910) envoked

a mechanism of rapidly moving dust particles travelling through the gasses of

interplanetary space to provide the tail luminosity.

About the same time that these theories were proposed, Schwarzschild

and Kron (1911) suggested that the molecular band emission could be caused

by a fluorescence phenomenon stimulated by the absorption of solar radiation.

Subsequently, this theory was formalized (Zanstra 1928, Wurm 1934a, b)

and was subjected to two tests. Ohman (1941) determined that the degree

of polarization in the C 2 and CN bands of Comets Cunningham (1941 I)

and De Kock-Paraskevopoulos (1941 IV) were what was to be expected for

a coma in which the molecular energy level populations are governed strictly

by fluorescence (i.e. pure fluorescence equilibrium). The more stringent test,



however, was done by McKellar (1942, 1943) and Swings (1943). These authors

found that by using the solar ultraviolet spectrum appropriately shifted by a

heliocentric velocity correction in a pure fluorescence calculation they could

reproduce the CN band profiles for a number of comets to reasonable precision;

this marked the end for the corpuscular theories of comet excitation. This

heliocentric velocity dependence of the excitation of cometary molecules, now

known as the Swings effect, also applies in the case of the excitation of other

molecules in the coma including the subject of this work, OH.

A second order excitation effect was first noted by Greenstein (1958)

in his observations of the violet (0,0) band of CN in Comet Mrkos (1957 V).

What seemed unusual to him at the time was that the ratios of certain lines

in the P- and R-branches (e.g. R10/R9, P3/P5) changed from the east side of

the coma to the west side. At the time of his observations Comet Mrkos was

situated such that east was roughly tailward and west was roughly sunward.

Thus, the best explanation for the line ratio differences was that there was

gas travelling towards the sun in the west and in an antisunward direction in

the east. This differential motion with respect to the sun led to a differential

Swings effect across the coma. This phenomenon, now called the Greenstein

effect, also plays a role in the excitation of the radio lines of OH.

Specifically, in the case of the excitation of the OH molecules in the

coma, the absorption of photons of one of a dozen wavelengths of solar

ulraviolet radiation (Mies 1974, see also below) excites the molecule from the

5



X 2n3/2 ground electronic state to the A state. Subsequent cascading

via ultraviolet and infrared emission (the IR cascading occurs between the

vibrational levels of the X 2n3/2 state) returns the molecules to the X 2H 3/2

state. Since the timescale for this cascading is much shorter (of order lO""
6

sec) than for the excitation of the molecules (either via collisions or radiatively

(Mies 1974)) most of the molecules occupy the lowest rotational level of the

ground electronic state (X 2n3/2 J=3/2) (c/. Schleicher and A'Hearn 1988).

A closer examination of this X 2
II3/2 state reveals that each of

its rotational energy levels is split into two levels. This splitting, called

A-doubling, is due to the interaction of the component of the electronic orbital

angular momentum which lies along the internuclear axis and the angular

momentum due to the molecular rotation (see Herzberg 1950 for further

details). Further splitting of these A-doublet levels arises from the hyperfine

interaction of the magnetic moment of the molecule with the spin of the

hydrogen nucleus. Thus, the X 2
II3/2 J=3/2 level actually consists of 4 levels,

shown in Figure 1.1 which are connected by transitions at 1667, 1665, 1720,

and 1612 MHz, the 18-cm lines of OH.

The intensity of the 18-cm emission depends on a number of factors,

including the population in the ground rotational state. The depletion of that

state is controlled primarily by the rate of UV excitation to the A 2 S
]

f

/2
state

(Schleicher and A'Hearn 1988). Owing to the many Fraunhofer lines in the

solar UV spectrum, the A-doublet levels of the ground rotational state are

6



F = 2

F = 1

X n3/2 J=3/2-

1720.530

1667.359

1665.402

1612.231

<
-F = 1

Figurel.l: The detailed structure of the lowest rotational level of the

ground electronic state of OH. The level is split due to A-doubling (these

levels are labelled +/- for the parity). Each of these levels is further split

due to the hyperfine interaction arising from the spin of the hydrogen nucleus.

These hyperfine levels are labelled by their total angular momentum quantum
number, while the 18-cm transitions of OH are shown as arrows. The numbers
on these arrows indicate the transition frequency, in MHz.
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selectively pumped. Moreover, since the solar spectrum exhibits extremely

fine structure in the vicinity of the major pumping lines, small variations

in the velocity of the comet, which lead to Doppler shifting of the incident

solar radiation, result in large differences in the rate at which these levels

are pumped (Schleicher and A'Hearn 1982, 1988). Thus the intensity of the

18-cm lines is a strong function of the heliocentric velocity of the comet. In

a quantitative sense, this concept is usually expressed through the inversion

parameter, i, which is a function of the heliocentric velocity and is defined to

be

nu - ni
i =

lere are

nu + ni

'

where nu(1) represents the population in the upper (lower) state of the

hyperfine transition. Using this nomenclature, when i is positive th<

more molecules in the upper level of the transition (i.e. the population is

inverted) and the coma will act as an amplifying maser for the background.

When i is negative, on the other hand, the molecules in the coma are anti-

inverted and the coma will be seen in absorption against the 2.7K (microwave)

background.

A number of authors have calculated theoretical values for the inversion,

either at specific heliocentric velocities (Mies 1974) or for a run of heliocentric

velocities (plots of inversion as a function of heliocentric velocity are known

as inversion curves; Biraud et al 1974; Despois et al. 1981; Elitzur 1981;

Schleicher and A'Hearn 1982, 1988). There is general agreement among their

8



results and between the theoretical predictions and the observations, although

some minor differences continue to exist.

1.3 Coma Kinematics

Aside from excitation studies, much work has gone into theoretical coma

kinematic models and the interpretation of 18-cm OH cometary data in light of

such models. The basic outcome of the theoretical effort are two models for the

propagation of molecules in the coma.

The first of these models, proposed and subsequently named for Haser

(1957, 1966), is a pure radial flow scheme. In this picture the parent molecules

leave the nucleus and proceed away radially until they are dissociated. From

that point the daughter molecules continue to flow radially away from the

nucleus. While this model is quite analytically tractable, it does fall short

when one uses it to predict line profiles and parent scalelengths.

Despois et al. (1981) were the first to calculate what one would expect

to see for 18-cm line profiles given the pure radial flow of the Haser model.

These profiles, which ranged from box-like to double-peaked depending on

the extent to which the coma was resolved by the beam (see also Schloerb and

Gerard 1985), were clearly different from their observed profiles although they

stopped short of making any statement to that effect, instead citing insufficient

spectral resolution. Later, Bockelee-Morvan and Gerard (1984) made direct

comparisons of their higher resolution spectra of comets C/Meier (1978 XXI)

9



and C/Austin (1982g) with theoretical Haser model spectra. Their conclusion

was that the data could exclude the Haser model in the case of monokinetic

parents, though for other parent velocity distributions the case against the

Haser model was less clear.

A difficulty in using the Haser model arises in the deduction of parent

scale lengths from radial brightness distributions. From the molecular lifetime

data of Potter and Del Duca (1964), Stief, De Carlo, and Mataloni (1965),

and Stief (1966) and measured outflow velocities one infers size scales of order

104-10 5 km for the inner (parent species dominated) coma. Such dimensions

are typically larger than those determined by employing the Haser model

to observed radial brightness distributions of radicals in the coma (Combi

and Smyth 1988a). Since the daughter molecules are likely to be produced

isotropically from their parents (see below) rather than radially, the scale

lengths deduced from the analysis of cometary brightness profiles in light of

the Haser model are not the true scale lengths, but the radial projections of the

true scale lengths (Combi and Delsemme 1980a). Combi and Delsemme further

note that one can use the Haser model to determine true coma gas scale

lengths providing the ratio of the parent and daughter velocities is known.

Lastly, it is physically unrealistic to expect the photodissociation

products of a parent molecule to continue travelling through the coma in the

same direction as their parent, i.e. radially, as the Haser model envisions.

10



Rather, isotropic ejection of the offspring molecules in the rest frame of the

parent seems more physically plausible.

The second kinematic model used to describe the gas flow in cometary

comae is the vectorial model. In this model, which was independently proposed

by Combi and Delsemme (1980a) and Festou (1981a), each daughter molecule

is released in a random direction from its parent, with an equal probability of

being released into any solid angle. At the time of the photodissociation, any

excess energy the photon might have is converted into kinetic energy of the

offspring molecules. This additional velocity is added vectorially to the original

parent velocity to produce the final daughter velocity.

Monte Carlo applications of this model (see Combi and Delsemme

1980a and Chapter 3) have been used successfully in a number of studies.

Combi and Delsemme (1980a) demonstrated that a photometric profile of

such species as CN and C 2 without the effect of radiation pressure can be

generated from averages of sunward and tailward profiles as was assumed

by Delsemme and Moreau (1973) (see also Combi and Delsemme 1980b and

Combi 1980 for further applications of this technique). Bockelee-Morvan and

Gerard (1984) have used the vectorial model in Monte Carlo calculations of

synthetic spectra which closely resemble their data from C/Meier, C/Bradfield

(1979 X), and C/Austin. Lastly, Combi and Smyth (1988b) have used a Monte

Carlo vectorial model in conjunction with a simple gas dynamical model to

11



explain the observed morphology of the Lyman a coma of Comet Kohoutek

(1973 XII).

1.4 The Present Work

Understanding the nucleus of a comet is, of course, one of the ultimate

goals of cometary science. However, in the absence of direct probes a

necessary step in attaining this understanding is to comprehend the workings

of the surrounding coma. With the recent apparition of Halley's Comet

came an unprecedented surge of cometary observations, coordinated by

the International Halley Watch, covering a broad range of wavelengths.

As participants in this global project, we have made high sensitivity, high

spectral resolution observations of the 18-cm lines of OH in Comets Halley,

Giacobini-Zinner, Hartley-Good, Thiele, and, more recently, Comet Wilson.

These data have served as the impetus for the kinematic modeling performed

for this thesis, as they are the best cometary OH radio data ever taken.

Therefore, the major thrust of the present work is to build on the past

OH excitation and kinematic studies to meld them into a complete and

selfconsistent kinematic model of a cometary comae, using our OH radio data

as an observational backbone.

The comparison data base is by no means limited to single dish 18-cm

OH data. On the contrary, it also includes the HCN data from P/Halley

of Schloerb et al. (1986a) which also exhibit good pre- and post-perihelion

12
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coverage and which have been useful in constraining parent molecular

velocities. Additional constraints on the parent outflow velocities have

from the infrared observations of H 2 0 in Halley's Comet (Larson et al 1986;

Mumma et al. 1986). The VLA observations of the 18-cm lines of OH from

C/Austin (1982 VI) and P/Crommelin (1983n)(Schenewerk et al. 1986) as well

as from Comet Halley (de Pater, Palmer, and Snyder 1986) have been useful

for outflow morphology comparison purposes (c/. Schloerb 1988). The list

of data sources presented here, however, is not complete (see Chapter 2 for a

comprehensive summary).

As a further guide in this modelling effort we have also used the

results of some previous theoretical studies (in addition to those already

mentioned). Both Festou (1981b) and Crovisier (1988) have studied the

velocity distribution of the OH and H offspring which are created during the

photodissociation of H 2 0. As a benchmark for the parent outflow velocities

we have used the results of one dimensional hydrodynamic calculations for

the gas flow in the inner coma (Crovisier 1984, 1987; see also Combi 1989).

These results have also been used to demonstrate the predicted behavior of

this outflow velocity as a function of the total gas production rate of a comet.

Lastly, and perhaps most importantly, the framework of our kinematic model

code comes from the work of Combi and Delsemme (1980a), who were the first

to suggest the implementation of the Monte Carlo technique for the vectorial

scheme.
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The problem to be addressed by this work is to describe, through a

model, the kinematics of cometary comae as a function of the heliocentric

distance and gas production rate of the comet. To this end, we will investigate

two key properties of the coma gas flow, the parent gas outflow velocity and

the sunward/antisunward outflow distribution. The determination of correct

parent outflow velocities is an important contribution to cometary science as

a whole, since most studies aimed at determining coma molecular abundances

rely on these velocities (and molecular lifetimes) to correct the observations for

the effects of resolution (see Feldman 1982; Schloerb, Claussen, and Tacconi-

Garman 1986). Estimates of the coma gas flow anisotropy from the analysis

of radio OH data from comets have been and will continue to be useful for

comparisons with 2- and perhaps 3-dimensional models of the coma {e.g.

Kitamura 1986, 1987). Such models attempt to describe the gas and dust flow

in the coma using physical parameters for the nucleus as an inner boundary

condition. Thus, indirectly, estimates of the coma gas flow morphology may

lead to a better understanding of the underlying cometary nucleus.

In the following chapter, we decribe the data sets which have been

used to constrain and compare with the model results. Chapter 3 contains a

complete description of the modelling technique, from the input parameters

through the workings of the code itself and finally to the output at the other

end. Chapter 4 details the results of our analysis, while Chapter 5 contains a

summary and concluding remarks.
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CHAPTER 2

THE DATA

2.1 Global and Local Observations

During its most recent journey into the inner solar system Halley's

Comet was greeted with an unparalleled worldwide observational effort as

ground based telescopes from around the world were trained on this famous

comet. In addition, for the first time, spacecraft were sent to make in situ

observations of the comet. The product of all these observations is a grand

data archive which is presently being compiled by the International Halley

Watch (Newburn 1983; Irvine, Schloerb, and Gerard 1983) and is due for

release to the scientific community in the fall of 1990.

The contributions of the cometary studies group at the University of

Massachusetts 1 to this archive include the data collected during our program

to monitor Comet Halley in the 18-cm transition of OH. These observations

were conducted at the 43-meter telescope of the National Radio Astronomy

Observatory (NRAO) in Green Bank, West Virginia2 . This thesis presents

primarily the model analysis of these data. During the monitoring program,

however, other comets presented themselves as viable observational sources and

some of this data also has been included in the analysis (see Chapter 4).

^his group includes, in alphabetical order, M.J. Claussen (currently at the Naval Research
Laboatory in Washington, D.C.), W. Ge, W.M. Irvine, W.M. Kinzel, F.P. Schloerb,
D.A. Swade (presently at Computer Sciences Corporation), and L.E. Tacconi-Garman.

2 NRAO is operated by Associated Universities, Inc., under contract with the National
Science Foundation.



Finally, our successes with the Halley observations have given us the impetus

to continue observing bright comets from that site (whenever possible); our

data from Comet Wilson attest to the quality of the 43-meter antenna and

its associated instrumentation (model results for these data also appear in

Chapter 4). Our observational technique while at NRAO is detailed in the

following section. In Section 2.3 we present the data themselves and discuss

their general properties. Finally, the last section contains a discussion of

the other data sets which have been helpful in guiding our choice of model

parameters and in evaluating the validity of our model results.

2.2 NRAO 18-cm Cometary Observations

The observations of the 18-cm radiation from Comet Halley reported

here were obtained between September 1985 and May 1986 using the 43-meter

telescope of the NRAO. During this period we had eight observing sessions,

with each session lasting from 3 to 7 days. In addition, we observed Comet

Wilson on two separate occasions, one in March 1987 and the other in May

1987. We have modeled these data as well as some of the spectra from Comets

Giacobini-Zinner, Hartley-Good, and Thiele obtained during the Halley

monitoring project.

During all of the sessions, we simultaneously made observations of the

2n3/2 J=3/2 F=2-2 transition at 1667 MHz and the 2U3/2 J=3/2 F=l-1

transition at 1665 MHz. During the November 1985 observing run, when the
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1667 and 1665 MHz emission from Halley was particularly strong, we also

made observations of the *H3/2 J=3/2 F=2-l transition at 1720 MHz for

purposes of determining the 1665/1720 and 1667/1720 hyperfine ratios as

probes of the excitation conditions in the coma. Such an excitation analysis

is only marginally possible given the quality of the 1720 MHz data and is

not germain to the present work. At all frequencies, we observed both right-

and left-circularly polarized (RCP and LCP) emission. Because any net

polarization which might be present in these data is extremely weak (see e.g.

Gerard 1985), we routinely present and model the combined RCP + LCP data.

Furthermore, since the certainty of our kinematic modeling results depends

directly upon the signal to noise ratio of the data, we have chosen to model

only the 1667 MHz line, the strongest of the hyperfine lines.

The 43 meter telescope was equipped with a dual-channel, FET amplifier

(except for the May 1987 observations of C/Wilson which were made with a

HEMT amplifier) which receives orthogonal linear polarizations and mixes

them in the IF to produce right- and left-circular polarizations. The system

temperature with the FET amplifier was typically £ 25 K, while that obtained

with the HEMT amplifier was ~28 K (since these observations were made at

low elevations, this includes a contribution from ground pickup).

Using Right Ascension and Declination scans through 3C286, we

determined the half-power beamwidth (HPBW) of this telescope to be 18'.0

at 18-cm wavelength. Therefore, the physical dimension of this beam at the
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distances of the comets observed ranges from 0.38 x 10 6
to 3.35 x 10* km (see

Tables 2.1 and 2.2). Telescope pointing was checked periodically during each

observing run by observing 3C286. Pointing was determined to be accurate to

within -HPBW/100, thus system related pointing errors are not considered to

be a problem. Cometary positions for each observing session were generated

using the most contemporary cometary orbital elements as input to the

ephemeris generation programs EPHGEN (EPHemeris GENerator) and

TBEG (Two-Body Ephemeris Generator) written by M.S.W. Keesey and D.K.

Yeomans and distributed by the International Halley Watch. These positions

and the topocentric velocity of the comets (the velocity with respect to a

particular position on the surface of the Earth) were updated every 9 minutes.

The position shifts of the comets over this time interval were typically only

2-4% of the HPBW. Therefore, the smearing of the source over the beam is

negligible. The velocity shifts over this same interval were £ 0.02 km sec" 1

1/10 channel, see below), making spectral smearing of no concern.

The 18-cm data were obtained by frequency switching the signal in the

backends (see below) by 45, 78, or 90 kHz. The choice of frequency shift was

made to ensure that we did not overlap the signal and reference profiles; the

larger shifts were used at times when the line was anticipated to be broad.

Calibration was achieved by observing the standard radio source 3C286 which

was assumed to have a constant flux density of 13.6 Jy at 18-cm (Baars et al.

1977). The sensitivity of this system was typically 0.33 K Jy
-1

; checks on the
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constancy of this sensitivity through the course of an observing run were made

periodically by observing the standard galactic OH source W12.

Velocity resolution was provided by a 1024 channel autocorrelator which

was divided into 4 x 256 channel backends to allow simultaneous observations

of two polarizations at two frequencies. Each quarter of the autocorrelator

yielded a total bandwidth of 56.2 km sec"* and a spectral resolution of

0.22 km sec
-1

.

For each of the days observations, we have produced a final spectrum

via a multistep operation. This process started with folding each individual

9 minute frequency switched spectrum over onto itself. We then removed a

linear baseline from each spectrum, thereby removing instrumental effects and

determining the rms noise level (a). These spectra were then weighted by 1/a 2

and averaged together to form a single spectrum which represents 6-8 hours of

observational data. From the daily average spectra we then removed another

linear baseline, to eliminate any longer term instrumental effects and determine

the rms noise level for the daily average (herafter referred to as

To arrive at an epoch (2-8 day) average spectrum we have averaged

together all of the individual daily average spectra. In this averaging process

we have weighted each spectrum by 1/<t?, which is equivalent to weighting by

the integration time for each spectrum since the system temperature was stable

throughout an observing run. The resulting spectra appear in the following

section.
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We have also used this weighting scheme when we determined the

appropriate values for A (Earth-Comet distance), Rh (Sun-Comet distance),

Rh (heliocentric velocity), and 0 (Sun-Comet-Earth angle, or phase angle),

for our model. Line one for each epoch listed in Tables 2.1 and 2.2 shows the

variation in each of these parameters over the course of the observations, while

line two for each epoch lists the 1/af weighted average value which we have

adopted for our modeling.

2.3 The Epoch Average Spectra

The results of our data reduction are shown in Figures 2.1a-h (for

P/Halley) and Figure 2.1i-p (for P/Giacobini-Zinner, C/Hartley-Good,

C/Thiele, and C/Wilson). The velocity scale in each of these figures represents

the velocity of the coma gas relative to the cometary nucleus along the line

of sight to the comet. A brief descriptive look at the data follows (for a more

complete treatment the reader is referred to Chapter 4).

The spectrum of Halley in January 1986 (Figure 2.1e) is noticeably

broader than those from the preceeding months (Figures 2.1a-d). The

additional feature seen in Figure 2.1e from Vcomet = -10 to -6 km sec" 1

is a background source. In Figures 2.1f and 2.1g (P/Halley, February 1986 and

March 1986 epochs) we again see quite wide lines. In addition, the spectrum

from March 1986 has a rather flattened top to it. Finally, the Halley spectrum

from May 1986 (Figure 2.1h) marks a return to a narrower line. The spike
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Figure 2.1b: The average 1667 MHz OH line from Comet Halley over
the period 19-21 October 1985.
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Figure 2.1c: The average 1667 MHz OH line from Comet Halley over
the period 13-19 November 1985.
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Figure 2.1e: The average 1667 MHz OH line from Comet Halley
the period 03-05 January 1986.
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Figure 2. If: The average 1667 MHz OH line from Comet Halley over
the period 18-20 February 1986.
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Figure 2.1g: The average 1667 MHz OH line from Comet Halley
the period 15-19 March 1986.
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Figure 2.1h: The average 1667 MHz OH line from Comet Halley over
the period 03-05 May 1986.
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Figure 2.1k: The average 1667 MHz OH line from Comet
Giacobini-Zinner over the period 19,21 October 1985.
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Figure 2.11: The average 1667 MHz OH line from Comet Hartley-Good
over the period 18-21 October 1985.
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Figure 2.
1 mi: The average 1607 Mil/ OH line from Comet

Hartley Good over the period 12-17 November 11)85.
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Figure 2. In: The average 1667 MHz OH line from Comet Thiele over
the period 12,14-18 November 1985.
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Figure 2.1o: The average 1667 MHz OH line from Comet Wilson
the period 28-30 March 1987.
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Figure 2.1p: The average 1667 MHz OH line from Comet Wilson over
the period 18-19 May 1987.
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emission

near the left side of the absorption line in this figure is real, and appears

prominently in both the 03 and 05 May daily average spectra. Indeed,

at this velocity is expected based on the inversion cnrve of Despois et al. (1981;

see also Chapter 4).

The spectra from the other comets used for this thesis (Figures 2.1i-p)

look completely normal with two possible exceptions. First, the spectrum of

P/Giacobini-Zinner in July 1985 (Figure 2.1i) exhibits a sharp edge on its red

side. Such a sharp feature is not seen in any of the other spectra, although

there is some suggestion of a sharp edge on the blue side of the P/Halley data

from March 1985 (Figure 2.1g). Second, the spectrum from C/Hartley-Good

from November 1985 (Figure 2.1m) is unusually narrow given the heliocentric

distance for that comet at the time the observations were made (Table 2.2; see

also below).

Since all of the spectra are essentially Gaussian in shape, we have chosen

to fit the lines by a Gaussian curve and to use the fitting results to characterize

the data. The best fitting Gaussian curves are shown in Figures 2.2a-p, where

in the top panel we have superposed the fit on the data. The bottom panel

of each of these figures shows the data after the Gaussian curve has been

subtracted. From this series of figures we see that, with the exception of the

P/Halley spectrum from March 1986 (Figure 2.2g), the Gaussian curves are a

good representation of the data. Table 2.3 contains a summary of our fitting

results. We have plotted the widths of the lines as a function of heliocentric
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Figure 2.2a: The data of Figure 2.1a with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2b: The data of Figure 2.1b with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2c: The data of Figure 2.1c with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2. 2d: The data of Figure 2. Id with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2e: The data of Figure 2.1e with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2f: The data of Figure 2.1f with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2g: The data of Figure 2.1g with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2h: The data of Figure 2.1h with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2i: The data of Figure 2.1i with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2j: The data of Figure 2.1j with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2k: The data of Figure 2.1k with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2m: The data of Figure 2.1m with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2n: The data of Figure 2.1n with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2o: The data of Figure 2.1o with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Figure 2.2p: The data of Figure 2.1p with the best fitting Gaussian
curve (top), and the associated residuals (bottom).
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Notes for Table 2.3:

1 Geocentric (Earth-Comet) distance

2 Heliocentric (Sun-Comet) distance

3 Phase (Sun-Comet-Earth) angle

4from a Gaussian fit to the data; AV is the mean velocity relative to the

nucleus.
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Sun-Comet-

Table 2.3

Earth Geometry and Line Characteristics

Comet

P/HaUey

P/Halley

P/HaUey

P/Halley

P/Halley

P/Halley

P/Halley

P/Halley

P/GZ

P/GZ

P/GZ

C/HG

C/HG

C/Thiele

C/Wilson

C/Wilson

Epoch A 1

Rh 2

Sept 1985

Oct 1985

Nov 1985

Dec 1985

Jan 1986

Feb 1986

Mar 1986

May 1986

Jul 1985

Aug 1985

Oct 1985

Oct 1985

Nov 1985

Nov 1985

Mar 1987

May 1987

A.U. A.U.

2.35

1.44

0.72

0.74

1.21

1.44

0.90

0.89

0.77

0.49

0.66

0.56

0.87

0.64

1.36

0.91

^peak

Jy/beam

2.47

2.09

1.71

1.34

0.97

0.63

0.94

1.67

1.29

1.04

1.21

1.19

0.85

1.41

1.25

1.28

23.9

25.1

5.2

46.4

52.3

33.9

65.3

29.9

52.0

73.0

55.6

56.0

69.8

38.2

44.8

51.8

0.030

(0.004)

0.134

(0.005)

0.318

(0.003)

0.219

(0.005)

0.157

(0.005)

-0.080

(0.003)

-0.122

(0.003)

-0.108

(0.004)

0.101

(0.006)

-0.178

(0.008)

-0.055

(0.007)

0.105

(0.004)

0.097

(0.004)

-0.066

(0.004)

-0.201

(0.005)

-0.108

(0.006)

AV4

km s
_1

-0.37

(0.13)

0.01

(0.04)

0.06

(0.01)

0.28

(0.03)

0.33

(0.04)

-0.63

(0.06)

0.25

(0.05)

0.34

(0.04)

-0.38

(0.07)

-0.01

(0.06)

-0.28

(0.15)

0.16

(0.06)

-0.05

(0.04)

0.11

(0.07)

-0.06

(0.03)

0.11

(0.08)

FWHM 4

km s
-1

1.86

(0.26)

1.92

(0.08)

1.90

(0.02)

1.98

(0.06)

2.37

(0.09)

2.96

(0.11)

3.44

(0.10)

1.71

(0.07)

1.86

(0.12)

2.20

(0.12)

1.99

(0.26)

2.53

(0.11)

1.78

(0.08)

2.06

(0.14)

2.16

(0.06)

2.24

(0.16)
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distance in Figure 2.3. This figure illustrates that there is a nominal linewidth

of 1.9±0.1 km sec-* for comets observed beyond ~1 A.U. from the sun.

Comets at smaller heliocentric distances tend to show much broader lines (the

exception to this is the anomalous C/Hartley-Good line from November 1985).

This broadening of lines at small heliocentric distances has been noted before

for observations of OH (Schloerb, Claussen, and Tacconi-Carman 1987; Gerard

et al. 1987a, b) as well as HCN (Schloerb et al. 1987) and has usually been

ascribed to increases in the parent gas outflow velocity near the sun.

The mean velocities, AV, for the spectra are also listed in Table 2.3.

These mean velocities are all displaced from the rest velocity of the nucleus

by less than 0.70 km sec" 1
in magnitude. The Greenstein effect is largely

responsible for these shifts, although anisotropics in the coma gas flow can also

cause such shifts (see Claussen and Schloerb 1987).

2.4 Other Data Sets

While data from other sources have not been modeled as part of this

work, they are nevertheless important as a basis for comparison with our

model results. Observations of the H 20 molecule in Comets Halley and Wilson

(Mumma et al. 1986; Larson et al. 1986; Larson, Mumma, and Weaver 1987;

Larson, private communication) have proven to be valuable as they trace both

the parent outflow velocity and outflow morphology. VLA images of the 18-cm
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Figure 2.3: In this figure we have plotted the Full Width at Half
Maximun (FWHM) of the OH lines used in this thesis as a function of
heliocentric distance. The FWHM values are derived from the Gaussian fits to
the data which, in most cases, represent the data well. The possible exceptions
to that are the spectra from Comet Halley in March 1986 (see Figure 2.2g) and
May 1986 (see Figure 2.2h). In the former case the profile is rather flat topped
with steep edges, leading to a FWHM value which is perhaps a bit large. In
the latter case, however, FWHM may be an underestimate since the fitting

routine does not take into account the real emission feature seen to the left

of the main absorption line. This figure illustrates, though, that there is a

nominal linewidth of 1.9±0.1 km sec
-1

for comets observed beyond ~1 A.U.
from the sun. Comets at smaller heliocentric distances show much broader
lines as illustrated here.
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line of OH in the coma of Comet Halley (de Pater, Palmer, and Snyder 1986)

are also potentially useful indicators of the coma gas anisotropy.

Observations of the HCN molecule (Bockelee-Morvan et al. 1986 and

Schloerb et al. 1987) provide further constraints on the parent outflow

velocity. In fact, these data are even more useful than the H 20 data owing to

their more extensive temporal coverage. Rounding out the coverage are the

observations of CN Jets/Shells (A'Hearn et al. 1986; Schlosser, Schultz, and

Koczet 1986) which also yield determinations of the coma outflow velocity.

In addition to the above gas outflow velocity estimates, an in situ

determination was made (Lammerzahl et al. 1986) with data collected by the

neutral mass spectrometer experiment (NMS) on board the Giotto spacecraft.

Lammerzahl et al. have used data from the NMS to derive the bulk velocity

of water molecules at distances less than 104 km from the nucleus. Because

this is the only in situ velocity determination, it is uniquely important for

comparison with our model results from about the same epoch.

Revealing in situ images taken by the Giotto and Vega 1 and Vega 2

spacecraft (Keller et al. 1986a, b; Sagdeev et al. 1986b) have also been used

for reference with our gas flow anisotropy model results. These data, however,

represent only the distribution of the dust in the vicinity of the nucleus and

therefore direct comparison is not possible. However, we can compare our

anisotropy results with that inferred from the 1.38 /zm water data collected

by the three-channel spectrometer (TKS) onboard the Vega 2 spacecraft
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(Krasnopo,sky et al. 1986
, m7) . ^^^ ^^

with anisotropics infe„ed from fte partkie^^^^
PLASMAG-1 instruments on Vega , Md^ 2 (Remi2oy ^ ^ i9g6)^^
Neut ral Gas Experiment (NGE) onboard Vega 1 (Curtis ei „. 1986; Hsieh „
* 1987). A fuil discussion of our results iu light of aU the work referenced in

this section appears in Chapter 4.
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CHAPTER 3

THE KINEMATIC MODEL

3.1 A Comparison of Two Models

The two principal models used to describe the gas kinematics of

cometary comae are the Haser model (Haser 1957, 1966) and the vectorial

model (Combi and Delsemme 1980a; Festou 1981a, b). Both models

describe the flow of both the parent and daughter species within the coma,

and agree (to first order) in their descriptions of the kinematics of the

parent molecules. The parent molecules leave the nuclear region and travel

radially outward into the coma. Some time later, these parent molecules are

photodissociated by incident solar UV radiation, and excess energy involved

in this photodissociation is converted to kinetic energy of the radicals. At this

point the two kinematic models begin to differ strongly. In the Haser model

the daughter molecules produced during the photodissociation continue to

travel radially away from the nucleus. In the vectorial formalism, on the other

hand, the direction taken by the daughter molecules is only constrained by

conservation of momentum. The name vectorial comes from the fact that in

this picture the final velocity of the daughter molecule is determined by the

vectorial addition of the original parent velocity and the additional velocity

impulse attained during the photodissociation of the parent molecule.



In choosing a model to describe a particular phenomenon, one is often

confronted with a choice between ease of computation on one hand and

Physical reality in the form of observational evidence and plausibility on the

other. The Haser model, with its uncluttered mathematics, seems at first to be

the model of choice. However, when this model is applied to the calculation of

expected daughter molecular scale lengths one finds that the predicted values

are typically larger than those actually observed (Combi and Delsemme 1980a

and references therein). The vectorial model, on the contrary, is quite complex

mathematically as exemplified by the analytical treatment of Festou (1981a).

However, Combi and Delsemme (1980a) have pointed out that the vectorial

nature of the kinematics need not result in a complicated treatment of the

problem. Indeed, their suggestion of applying the Monte Carlo technique to

the vectorial model was a powerful breakthrough in this field. This technique

allows one to introduce a variety of detailed effects with the only cost being

that of computer time.

Given the above arguments, we have adopted the vectorial formalism in

our effort to generate synthetic spectra, and employ the Monte Carlo method

for increased flexibility. A flow chart for our model calculations is presented

in Figure 3.1; we proceed as follows (complete details are found starting in

Section 3.2):

• A parent (H 2 0) molecule is generated at some time tj which lies in the

range 0<ti<tobs . This observation time, tobs , is chosen to be five times the
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Figure 3.1: A flow diagram for the model used in this work. The
variable r in some of the steps denotes a random number in the range [0,1) (
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sum of the parent and daughter lifetimes against photodissociation (see Section

3.2), thus the important parameters in this step are these lifetimes.

• The time at which that molecule photodissociates, tdj is then

calculated. If this time is after the time of our model observation of the comet

then this parent molecule was unproductive for our purposes; we then go back

to the top and generate another candidate parent molecule. For this step we

need the lifetime of water.

• The next step is to determine when the OH radical itself will

photodissociate. If it is dissociated prior to our model observation then it is

not worth pursuing any further; again, we go to the top and generate another

candidate parent molecule. This step requires a value for the lifetime of OH.

• If we have made it to this step it means we have a successful

parent/daughter combination. Thus we now determine the parent and

daughter directions and speeds. (In later models we also flag each parent to

indicate whether it is from the dayside or the nightside of the nucleus, see

below.) From this information it is straightforward to determine the inversion

weight for the OH radical as well as its beam weight. Finally, we determine the

velocity of the OH radical with respect to the Earth and add its contribution

to the appropriate velocity bin. For this stage of the modeling we need both

parent and daughter velocity distributions, the acceleration of an OH radical

due to resonant scattering, and an inversion curve.
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• The last step in the modeling process is to check the number of

daughter molecules we have created. If that number is less than 2 x 10*, a

number chosen to minimize the statistical noise inherent in a Monte Carlo

model such as this, while still producing results in a manageable amount of

computer time, we go back to the top and select another candidate parent

molecule.

In addition to the above mentioned input parameters, we also require

the geometry of the observations. This includes the Sun-Comet distance (Rh ),

the Earth-Comet distance (A), the Sun-Comet-Earth angle (/?, also known

as the phase angle), and the heliocentric velocity of the comet (Rh ). For these

parameters we use noise weighted values as described in Chapter 2, Section 2.2.

Below we describe each step in the modeling process in greater detail.

3.2 The Birth of the Parents (H20 Molecules)

Since, by their very nature, Monte Carlo simulations are subject to

statistical fluctuations, it is important to supress such fluctuations as much

as possible. We accomplish this in two ways. First, as mentioned above, each

of our simulations consists of 2 x 10s OH radicals. Second, the length of time

over which we allow H 2 0 molecules to be generated and dissociated into OH

radicals before the system is observed is of sufficient length to properly sample

the parent and daughter lifetime distributions. This observation time, tobs , is

chosen to be five times the sum of the parent and daughter lifetimes against
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Photodissociation (see Sections 3.3 and 3.4). We assume that there is constant

production rate of molecules over the course of each simulation and therefore

we use a random distribution of parent creation times over the length of each

model simulation. Since all parent creation times
(Vs) are equally probable

in this case, they are determined from the expression t| = rtobs , where r

is a random number chosen without bias on the interval [0,1)1, such that fcj

values fall uniformly within the range 0<t<tobs . We note that Combi and

Smyth (1988a) have recently detailed a means of modeling a gas production

rate which is variable over the course of a simulation such as this. However,

the times at which surges in the gas production rate occur for any given comet

are uncertain, thus use of such a scheme to model variable production rates

seems unwarranted at this time.

3.3 The Death of the Parents

In order to make our model code more efficient we first ask whether

each parent molecule we generate will produce a daughter molecule (an OH

radical) before the time of our observation. If it will not generate a daughter

it is ignored and another candidate parent is produced. To determine whether

the parent is a viable one we must establish the time of its photodissociation.

Our calculation of this time is in complete analogy with the determination of

1 To generate this and all other random numbers used in this model we rely on the
standard VAX- 11 FORTRAN pseudo-random number generation function RAN which
uses the algorithm Xi+1 = ((2

ia + 3) X X;) mod 232 followed by scaling Xi+1 to lie on the
interval [0,1) to generate random number ri+1 from its predecessor r;. All further reference
to random numbers implies numbers lying in the range [0,1).
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the distance a particle travels in an infinite, homogeneous medinm between

collisions. Following on the work of Cashwell and Everett (1959), the

probability of a photodissociation happening during the interval from t to t + dt

is given by

p(t)dt = e- FCTt F (rdt,

tion cross
where F is the flux of dissociating photons and a is the photoabsorpti

section. This expression can be written in terms of the probability weighted

average lifespan for molecules, r, which is given by

r =
/o°°tp(t)dt 1

/0
°° p(t) dt " Fa

•

Thus, the probability density for dissociation in such a photon field

e-t/r

P(t) = ~
•

T

The probability distribution function is defined as the integral of the

probability density, or

is

P(t)= /'pft'Jdt',
Jo

>ers
which ranges in value from 0 (at t = 0) to 1 (at t = oo). As random numb(

chosen in the fashion described above also lie in the range [0,1), it is easy to

see that by setting P(t) equal to a random number one can uniquely determine

t while uniformly sampling the probability distribution function. This latter

point ensures that the probability of the photodissociation being between t and
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t + dt is given by p(t) dt. So, the lifespan of a molecule is determined from

r = P(t) = l-e-^r

(where r is a random number) which implies

t = -r ln(l -r).

Since (1 - r) is uniformly distributed on the interval [0,1) if r itself is, this

expression can be simplified to

t = -rln(r).

Making the above equation specific to the case of the water molecule, we h

td = ti - th 2o ln(r)

,

where td signifies the time at which a daughter molecule is created.

For the water lifetime value we use the result of Festou (1981b)

who bases his value of 8.2 x 104
sec on the H 20 absorption cross section

of Watanabe, Zelikoff, and Inn (1953) and the solar flux as reported in

Thekackara (1970) and Widing, Purcell, and Sandlin (1970). This value is in

agreement with the 8.33 x 104 sec lifetime quoted by Huebner and Carpenter

(1979), as well as the 7.94 x 104
sec lifetime quoted by Crovisier (1988). All of

these values are for a heliocentric distance of 1 A.U. We assume that

ave
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this lifetime is proportional to Rg (which follows from simple conservation of

photodissociating flux).

3.4 The Death of the Daughters (OH Radicals)

In contrast with the parent molecules, we ask whether the daughter

molecule produced during the photodissociation of the parent will survive

until the observation time. If it is dissociated before this time it is ignored and

another candidate parent is produced. In analogy with the above treatment

of the parent molecules, the time at which the OH molecule produces a

granddaughter molecule is given by

t
g = td - t0h ln(r)

,

where t
g is the time at which a granddaughter radical is created and rOH is the

lifetime of the OH radical.

Values for the lifetime of OH in a cometary coma have been determined

by a number of authors (Jackson 1980; van Dishoeck and Dalgarno 1984

(hereafter vDD); Schleicher and A'Hearn 1988), with results differing by as

much as a factor of 3. The cause for these disparities lies, in part, in the solar

spectrum which is adopted. Jackson (1980), building on the earlier work

of Potter and Del Duca (1964), demonstrated that a Swings-like effect (see

Chapter 1, Section 1.2) works in influencing the photodissociation lifetime of

OH. That is, since the photodissociation proceeds via excitation into discrete
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levels above the dissociation threshold and since this excitation is heliocentr

velocity dependent, the lifetime of OH is a function of the velocity of the

comet. On a more detailed level, the lifetime of each molecule depends on it

own particular velocity with respect to the sun, although this subtle effect

ignored in this work. Thus, slight variations between adopted solar spect

lead to small differences in the derived OH lifetime at many velocities.

The complexity of the calculations also plays a critical role in the

derivation of the lifetime of OH. For example, since the excitation of the OH

molecules into these superdissociative energy levels takes place from the ground

state the population inversion of that ground state (see Chapter 1, Section 1.2)

is important to consider. Figure 3 of vDD, which shows that the difference

between the OH lifetimes which are calculated with and without consideration

of the ground state inversion can be as much as a factor of -1.3 at some

heliocentric velocities, illustrates this point quite well.

Finally, calculated OH lifetimes depend on the number of possible upper

levels considered, as is illustrated in Figure 2 of vDD. They have modeled

absorption into the A 2£+ (v' = 2, 3), 1
2E~, 1

2 A, B 2 S+, D 2 S~, and 22 £-32 £

states and included the inversion of the ground state (from Schleicher and

A'Hearn 1982) into their calculation of rOH - Because their modeling was the

most complete and used the most up-to-date solar spectrum at the time this

work began, we have adopted their (solar minimum) lifetime curve for use in

our analysis. Recently, however, Schleicher and A'Hearn (1988) have suggested
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that the vDD work may not properly model the physics of the OH dissociative

process. Their first criticism is that vDD assumed that all molecules dissociate

after being excited into the A>E+ (V = 2) vibrational level. On the contrary,

Schleicher and A'Hearn have found that one molecule in six radiatively decays

from this level rather than dissociating. Furthermore, Schleicher and A'Hearn

include the effect of heliocentric velocity in the excitation to the A 2 £+ (v' = 3)

level which was ignored by vDD. Our model results (see Chapter 4) suggest,

however, that the true lifetime of OH is nearer to that determined by vDD.

When using the vDD OH lifetime we are always careful to make it an

explicit function of the heliocentric velocity of the comet. We do this by

spline fitting the lifetime curve and determining the value of this spline at the

appropriate heliocentric velocity2
. We have neglected the more subtle effect of

the lifetime of each individual OH radical having a lifetime which is a function

of its particular heliocentric velocity (that is, a Greenstein-like effect for the

lifetime). Finally, we also assume an R2 dependence for this lifetime.

3.5 Parent Velocity Distribution

termineAfter each successful parent/daughter pair is generated we dete

their respective velocities. The parent velocity is taken to be a superposition

of a Maxwellian velocity due to the temperature of the gas and a bulk flow

velocity due to the expansion of the coma into the vacuum of space. Since

To spline fit and interpolate this and all other curves in this model (see Section 3.8) we
rely on the routines SPLINE and SPLINT as listed in Press et al. (1987). When using
SPLINE we regard the slope at either endpoint as being "natural", i.e. 0.
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the water molecule has only weak resonance lines in the strongest portion of

the solar spectrum, acceleration of water molecules by resonant scattering

is unimportant. Therefore, the original parent velocity remains unchanged

throughout the course of the life of the parent.

To generate the Maxwellian component of this velocity we sample the

Maxwellian probability distribution and employ an acceptance-rejection

scheme. A candidate speed (Vcand ) is generated by multiplying a random

number by 5x the most probable speed (Vmp ) for the chosen kinetic

temperature. That is,

Vcand =n (5)W?^.
V
mH2o

This assignment ensures that all parent velocities lie in the range [0,5 Vmp ),

but since the fraction of all molecules traveling faster than 5 Vmp is less than

1 in 10 10 we lose no generality in choosing this upper speed cutoff. We then

choose a second random number (r 2 ) and compare it to the value of the

Maxwellian probability distribution (which has been normalized by its value

at Vmp ) at the candidate speed. If

we take the thermal component of the parent velocity to be Vcand . Otherwise,

a new candidate speed is chosen and this whole process is repeated until the

parent speed is successfully generated. For the kinetic temperature in this

Maxwellian distribution, we use 50 K. For comets with gas production rates
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of ~10» molecules sec- such temperatures are typical for the region of the

coma where the gas decouples from itself and ballistic flow ensues (Crifo

1986a; Bockelee-Morvan and Crovisier 1987). In any event, our choice for

this kinetic temperature is not very critical since the thermal component of

the parent velocity is small compared to the bulk outflow component, and the

temperature only enters in through a square root.

For the bulk outflow velocity component of the parent velocity we use

a range of values. Constraints for our parameter search come from both

theoretical and observational evidence for what realistic outflow velocities

should be. On the theoretical side, many authors (Marconi and Mendis 1983,

1984; Crovisier 1984; Huebner 1985; Bockelee-Morvan and Crovisier 1987; see

also Crifo 1986b and references therein) have shown that for comets of average

gas productivity velocities of -0.8 km sec" 1 are expected near the point in the

coma where the gas decouples from itself.

ObservationaUy, Larson et al. (1986) estimate outflow velocities of

0.9±0.2 and 1.4±0.2 km s" 1 from their pre- and post-perihelion infrared

observations of water in Comet Halley. Radio observations of the hydrogen

cyanide molecule in the coma of Comet Halley have led to outflow velocity

estimates of 1.5 km s" 1 (Despois et al. 1986) and from 0.8 km s" 1
to

1.15 km s" 1 (Schloerb et al. 1986b). In addition, Krankowsky et al. (1986)

report an outflow velocity of 0.9±0.2 km s
_1

for Halley based on Giotto

neutral mass spectrometer (NMS) measurements. Although the above
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estimates were made for only a few heliocentric distances they serve as an

excellent basis for comparison with our model results.

In this work we span a range of outflow velocities from 0.2-0.4 km s"* up

to whatever outflow velocity is necessary to fit our spectra given a minimum

Xl criterion. Originally, we only simulated one parent outflow velocity at a

time. However, the constant need for making our modeling effort more efficient

has prompted us to make it possible to simulate 5 different parent outflow

velocities simultaneously. This cuts down the CPU consumption of the model

by a factor of about 3.5 (additional overhead prevents this factor from being

5). Chapter 4 contains details on our parent outflow velocity results.

3.6 Parent Outflow Morphology

In the following discussion, we will use the terms dayside and nightside to

describe regions of the coma and nucleus of a comet. Before we do so, we must

describe the geometry used in our model. As shown in Figure 3.2, the origin of

both the antisun (unprimed) and antiearth (primed) coordinate systems lies at

the center of the comet. We take the +z-axis to point in the antisun direction,

while the +y-axis lies perpendicular to the sun-comet-earth plane. The utility

of defining the axes in this fashion is that conversion of the coordinates of a

molecule (and its velocity) in the antisun system to the antiearth system for

purposes of beamweighting (and line-of-sight velocity determination, see below)

involves only rotation about the y-axis by the phase
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y,y axis

x axis
x' axis

Figure 3.2: The coordinate systems used in our modeling. The origin
for both coordinate systems is the nucleus of the comet. The x, x', z, and z'

axes all lie in a common plane which passes through the sun, the earth, and
the comet. The y and y' axes are coincident and perpendicular to this plane.
The z axis points away from the sun, while the z' axis points away from the
earth. Transformation of coordinates in the unprimed frame to the prime
frame is accomplished by rotation through the angle known as the phase
angle.
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angle (the sun-comet-earth angle, for the epoch being modeled (see Section

3.9). Based on this coordinate definition, it is easy to see that the dayside of

the comet is defined by the relatidons

7T

2<«<x

and

0 <
<t> < 2tt

,

where 6 and cf> have their usual spherical coordinate meanings.

Now, in our initial modeling the direction in which each parent molecule

travels was established by a two-step method. The first of these steps is to

force which hemisphere (day or night) of the coma the water molecule enters

by imposing a predefined day/night ouflow ratio. The governing parameter

for this determination is called the anisotropy parameter. This parameter,

hereafter referred to as AP, is defined as follows,

AP - log [Qday/Qnight] ,

where Qday (ni ght) represents the production rate into the day (night)

hemisphere. Thus, the fraction of all molecules which enter the night

hemisphere of the coma is given by

r _ Qnight _
/ n

Qtotal 1 + 10AP

(hereafter, / = 10AP ). In practice, we choose a random number (r) and
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compare it to /n ,
determining which hemisphere the molecule enters as follows:

. , f
day» /n <r<l;

hemisphere = I

{
night, 0 < r < /n .

Within each hemisphere, we treat the emission as being isotropic. Th

technique is quite schematic, but the results of such modeling are illustrati

of the gross outflow properties of the coma. Any strong jets of emission, for

example, would show up in our model results in the form of large derived AP

values (or large negative values in the somewhat unlikely event that the jet

originates on the nightside). The only artifact of this modeling scheme is an

outflow discontinuity at the terminator which we feel is a minor problem in

light of its utility.

The second step in determining the direction in which the parent travels

is to distribute the molecules within the two hemispheres. To accomplish

this, we use the same random number which was used to make the day/night

decision. That is, for molecules which enter the day hemisphere, the cosine of

the spherical angle 9 is given by

cos 9 = i —
.

/

while for the other hemisphere we use

cos0 = 1 - r (l + /).

80



Both of these forms reduce to the standard

cos 6 = 1 - 2 r

for the case of pure isotropic emission (/ = 1; see Cashwell and Everett 1959).

Finally, we determine the azimuthal angle, 0, by the formula

4> = r'(27r),

where r' is another random number.

More recently, however, we have made our model perform more efficiently

and we have adopted a new strategy for simulating differing day/night outflow

ratios. Rather than the laborious method of using a different day-to-night ratio

for each model simulation, we now model only isotropic outflow. Within each

simulation, each water molecule is assigned a flag indicating whether it came

from the dayside or the nightside of the nucleus. We then accumulate two

spectra for each parent outflow velocity, one which represents the contribution

from the dayside molecules and one arising from the nightside molecules. To

simulate different day-to-night ratios we simply construct linear combinations

of these two spectra. This whole process is faster than the prior technique by a

factor of about n, where n is the number of different day-to-night ratios being

simulated, and the model results are identical to those obtained with the old

technique.
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3.7 Daughter Velocity and Spatial Distributions

The daughter molecules receive an additional velocity component in

a random direction at the time of their creation. This additional velocity

arises from the excess energy of the dissociating photon. This process has

been studied in detail by Festou (1981b) who divides the photons shortward

of 1860A (the wavelength below which the water absorption cross section has

non-negligible values) into three regimes.

The first of these regimes is defined by the range 1357A < A < 1860A,

the first absorption band (X^-A^) of water. Photons in this regime are

responsible for the bulk of the photodissociation of water in the coma; about

72% of all water molecules are destroyed by such photons during periods

of relative solar inactivity. Festou also found this regime to be important

because the excess photon energy was insufficient to either vibrational^ or

electronically excite the offspring molecules. Thus the excess energy was

distributed amongst the daughter molecules as kinetic energy. He derived a

velocity for the OH radicals which had a Gaussian distribution with a mean

velocity of 1.15 km s" 1 and a dispersion of 0.08 km s
_1

.

The second of Festou 's photodissociation regimes covers the range

A<1357A, A^1216.6A (the second (X 1 A.-B 1 A x ) and subsequent absorption

bands), while the third regime corresponds to A = 1216.6A (Ly a).

Photodissociation of water by photons in these two wavelength regions is less

common and accounts for only about one quarter of the total number of water
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molecule dissociations within the coma. Therefore, since first band absorption

is the dominant water photodissociative channel and Festou had done the

most complete treatment of the water dissociation problem at the time, most

analyses of the coma requiring knowledge of the gas kinematics since that time

have used an OH velocity of 1.15 km s
_1

.

More recent theoretical and experimental results, however, have shown

that in fact the OH radicals may be created in vibrational^ excited states

(for first band absorption) and rotationally excited states (for second band

absorption; see references in Crovisier 1988). Allowing for this excitation,

Crovisier (1988) derives an OH velocity distribution which has a mean value

of 1.05 km s- 1
(0.1 km s" 1 lower than the mean velocity derived by Festou

for first band absorption) and a longer tail towards small velocity than the

distribution derived by Festou. Since the important velocity in affecting the

scale length of the coma is the vectorial sum of the parent and daughter

velocities, it is imperative that we use the daughter velocity distribution which

is based on the most complete treatment of the water dissociation problem.

Thus, for our modeling we have adopted the daughter velocity distribution

as derived by Crovisier (1988). When using this OH velocity distribution, we

take into account the fact that the OH molecule has some strong resonance

lines in its 0-0 band which give rise to an appreciable radiative acceleration via

scattering. Dolginov, Gnedin, and Novikov (1971) have determined this
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acceleration to be 0 01 R~ 2 cm «=-2 QT1 j iKh cm s and we have adopted their value for our

modeling.

In the true spirit of the vectorial model, the distribution of directions

taken by daughter moleeules following the destruction of their parents is

isotropic in the rest frame of the parent molecule. That is, each OH radical

leaves the scene of the dissociation in a direction defined by the spherical

angles 6d and <pit which are determined from the following relatitions:

cos 9d = 1 - 2 rj

and

<f>d =r2 (27r),

where both n and r 2 are random numbers. The origin for the "sub-d"

coordinates is the site of the photodissociation, where the +Z-axis points away

from the sun.

3.8 Inversion Weighting

Having established the complete trajectory of the OH radicals, it is

straightforward to determine both their positions within the coma and their

velocities at the observation time. Finally, to produce spectra we must

weight each molecule by its inversion value (thereby directly modeling the

Greenstein effect), apply a beamweighting factor, and add its contribution
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to the appropriate velocity bin. These processes are discussed in this and the

following two sections.

Although the inversion curve of Schleicher and A'Hearn (1988) is based

on a more recent (and therefore more reliable) solar atlas than that used to

derive the Despois et al. (1981) curve, Schleicher and A'Hearn themselves

have compared data from the literature with the predictions of both inversion

curves and conclude that neither curve is uniformly better than the other over

the entire range of heliocentric velocities. Therefore, we have chosen to use

both inversion curves. This leads to two different results for any given model

spectrum, and the resulting disparity of results have been folded into our error

analysis.

In practice, whichever inversion curve is used is first spline fit. The

inversion weight of each molecule is determined by the value of this spline

curve at the heliocentric velocity of the molecule. Finally, this inversion weight

is taken to be independent of heliocentric distance (cf. Schleicher and A'Hearn

1988).

3.9 Beam Weighting and Velocity Binning

In our model we are capable of simulating a variety of observations. It

is possible to generate a model map of as many as five beams with offsets

expressed in terms of RA and Dec or x' and y'-coordinates (see Figure 3.2).

We also can generate simultaneously the spectra that would be seen if up to
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five different observatories had pointed their telescopes at the nuclear position.

For any model observing mode, we begin determining the beam weight(s) for

each molecule by transforming its coordinates in the unprimed coordinate

system (xqh^oh^oh) to the plane of the sky (the x'y'-plane). That is,

xoh — xoh cos /? - zoh sin (3

and

voh = yoH ,

where 0 is the sun-comet-earth angle. Next, if the coordinates of the beam

center(s) is(are) given in the RA and Dec system we further transform the

coordinates of the OH radical as follows

"OH = XqH sin p - y'ou cos p

and

£oh = XqH cos p + y^H sin p

.

In these expressions, p, the angle between the comet-sun line (the -z-axis)

and true north (the +Dec-axis), is found by the Laws of Sines and Cosines for

spherical triangles (see Figure 3.3) and is given by

cos£ftsin(Aa)
p = arcsin —— _ i I

sin (arccos (sin 6C sin SQ + cos 8C cos 6Q cos(Aa)) j
'

where a0 ( c)
and £0(c) are the RA and Dec for the sun (comet) and

Aa = a® - a c . For either the RA/Dec or the x'/y' system, then, we are able
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Figure 3.3: The Earth-Sun-Comet geometry. In this figure the Earth
(E) is shown lying at the center of the celestial sphere. The complete ellipse
(half of which is dashed) in the center of the figure represents the celestial
equator. The directions towards true north (N) and the Vernal Equinox (7) a

shown. Also in this figure are arrows indicating the directions in which Right
Ascension (a) and_Declination (S) increase. The line joining the comet (C)
and the sun (S; CS, seen as an arc when projected onto the celestial sphere)
is defined to be the -z axis (see text). Thus, the angle p is ZNCS.
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to determine the offset(s) of the OH radical from the beam center(s). Fi„a,ly,

the beam weight(s) are found using the formula

>eam weight; = exp^-41n(2) ^ ^jr) ,

where off;,, is the jth coordinate of the ith beam offset and B{„ is the jth

dimension of beam i.

The final step in generating a model spectrum is to add the product

of the inversion and beam weights for each OH molecule to the appropriate

velocity channel of the modeled 256-channel spectrometer. Thus, we need to

know the velocity of the molecule with respect to the earth (i.e. in the primed

coordinate frame). Its heliocentric velocity is easily transformed to this plane

by the expresssion

^oh — zoh cos /3 + x0H sin (3 .

This velocity is then used to determine the proper channel index and the

product of the beam and inversion weights is added to the running sum for

that channel.
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CHAPTER 4

MODEL RESULTS

4.1 Introduction

The outstanding success of radio observations of Halley's Comet by

the International Halley Watch has shown that there is much to be learned

from observations of the 18-cm OH transitions. The OH emission is not only

a useful probe of the composition of gas in the comae of comets (see, for

example, Snyder 1985 and references therein) but can also be exploited to

study the gas kinematics within the coma (Bockelee-Morvan and Gerard 1984,

Bockelee-Morvan et al 1985, Tacconi-Garman and Schloerb 1987a, b).

In this chapter we investigate the roles that cometary gas productivity

and heliocentric distance play in influencing the coma kinematics. Since gas

productivity in comets tends to increase with decreasing heliocentric distance

(see e.g. Ney 1982), we must have some way of separating the influence of the

heliocentric distance on the coma kinematics from that of the gas production

rate alone. We are able to accomplish this separation through the analysis of

spectra from a number of comets at a few common heliocentric distances (see

Section 4.3.3).

However, the gas production rate is not the only factor which can

determine the parent gas flow properties. Indeed, it is well known that parent

molecules flow more rapidly as the comet nears the sun (e.g. Delsemme 1982



and references therein). Delsenrnre presents both theoretical reasoning and

observational evidence (from Whipple 1980) which points to a velocity law of

the form

Vp = (Vp)0 R~"
,

where Rh is expressed in A.U. and n = 0.5 (theoretical) or 0.6 (observational).

In order to determine if our observed OH line profiles are consistent with

a dependence of this form, we have modeled the high S/N (;> 3) data from

P/Halley, as well as from P/Giacobini-Zinner, C/Hartley-Good, C/Thiele, and

C/Wilson. These data represent a wide range of heliocentric distances from

that taken in September 1985 (Rh = 2.47 A.U.) through perihelion for Comet

Halley in February 1986 (Rh = 0.63 A.U.) to that taken in May 1986 (Rh =

1.67 A.U.). For the presentation and preliminary discussion of these data the

reader is referred to Chapter 2 of this thesis.

We begin our discussion in Section 4.2 with the calculations of the gas

production rates and the comparisons of these values to those derived by other

authors from other observations. Following that, we present and discuss our

model results in light of other recent observations and theoretical endeavors

(Section 4.3).

4.2 Gas Production Rates

in
We have calculated gas production rates for all the cometary spectra i

this thesis via the method outlined in Schloerb and Gerard (1985). Thus, we
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begin by adopting their

OH line.

expression for the average flux density of a cometary

4?rA 2 2i/Vmax 8

tern

(equation 11 of Schloerb and Gerard). In this equation A ul is the Einstc

spontaneous emission term, i is the inversion of the ground state A-doublet

levels, TBG is the background temperature, Fu is the statistical weight of the

upper level of the transition, A is the earth-comet distance, and Vmax is the

maximum expansion velocity of the gas in the coma. T is defined to be the

product of QP ,
the production rate of all possible OH parent species, and

toh, the lifetime of the OH molecules. Since 2Vmax S, is simply the velocity-

integrated flux, which we will call IOH , the expression for the production rate

of OH reduces to

Q
7.06 x 10 25

OH
3.3 K

BG

105
sec

1 2

1 AU
IOH

1 mjy km s
-1 mol -l

For this expression, which we have written for the 1667 MHz line, we have

taken the value for A ul from Destombes et ai (1977). We have also assumed

a constant background temperature of 3.3 K for all comets. Lastly, since our

model results provide few clues as to which inversion curve is more appropriate

for a given helocentric velocity (Section 4.3), we use an average of the inversion

values from the inversion curve of Despois et al. (1981; hereafter Despois) and

from that of Schleicher and A'Hearn (1988; hereafter SA) in our calculation of

the production rates; the error determination for these production rates reflect
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the disparity in the inversion curves. The exception to this approach is the

case of the May 1986 P/Halley observations (see Chapter 2, Section 2.3; see

also below). To account for the effects of beam resolution on our observed IOH
values, we have used both the parameters of the Festou vectorial model (Fcstou

1981a, b) and Radio Model 1986a (Schloerb, Claussen, and Tacconi-Garman

1987) .
Our adopted gas production rates are based exclusively on the Radio

Model 1986a values as its parameters are closest to those derived in our models

(see below).

We have made further approximate corrections to the derived production

rates to account for the effects of quenching of the OH A-doublet (Schloerb

1988) .
To obtain the multiplicative factors used for this correction we have

interpolated between values listed in Table 2 of Schloerb using an inverted

4-point bilateral interpolation scheme; as the spacing between values in this

table is rather coarse, and this is a simplified approach to the quenching

problem, we stress that these corrections should be viewed as "zeroth order"

corrections. Furthermore, for one set of observations, those of Comet Halley in

February 1986, we have had to extrapolate to a higher resolution parameter

than was listed in that table. In all cases we have assumed a value of 0.1%

for the ion/electron fraction. The maximum multiplicative correction factor

for the Radio Model 1986a results was 4.54 (Comet Halley for the May 1986

observations), and in cases where the uncorrected gas production rates were
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lower than 2 x 10- molecules we have not corrected ^
effect;

The error in these production rate determinations comes from a variety

of sources. First, the observational 18-cm line integrals, IOH , have intrinsic

error in them. In addition, there is an error which arises from the epoch

averaging procedure. That is, the average data are from a range of heliocentric

and geocentric distances and heliocentric velocities. The heliocentric distance

enters into the production rate calculation through the lifetime of the OH

radical, which is taken to vary as RJ. The variation in heliocentric velocity

over the course of a series of observations results in an inversion which is time

variable. However, a larger source of inversion error arises from the differences

in the values of the inversion at particular heliocentric velocities indicated by

the two inversion curves. In addition, there is the uncertainty associated with

the choice of kinematic parameters used to describe the coma. The relative

contributions of all of these error sources vary from epoch to epoch but in

most cases the dominant source of error for a given kinematic model is the

uncertainty in the inversion. Therefore, our adopted production rates are the

averages of those derived using the Despois and SA inversion curves and the

errors on these values are derived from the discrepancy between the two values.

In cases where this discrepancy is less than 15% we have assumed a nominal

error of 15% to account for the other error contributions.
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In Tables 4.1 and 4.2 we present a summary of our production

calculations for the cometary observations of this thesis. In Figure 4.1,

compare our production rates for Comet Halley with those obtained from IUE

OH data using the Festou vectorial model (Feldman et al. 1986). In the top

portion of this figure we present our Festou vectorial model OH production

rates, while in the bottom panel we show our Radio Model 1986a results. The

agreement between our results and the UV results shown in the top panel of

this figure illustrates that the long standing disparity between UV and radio

gas production estimates can be attributed to the effects of quenching of the

OH A-doublet (see Schloerb 1988 and references therein). For reasons cited

above, however, we will adopt our Radio Model 1986a quenching-corrected

production rates for the remainder of this work. These production rates are

also compatable with the results of Feldman et al. (1986)(Figure 4.1, bottom

panel).

4.3 The Model Results

4.3.1 General Remarks

As fully detailed in Chapter 3, our model for the kinematics of the gas in

the coma of a comet follows the original work of Combi and Delsemme (1980a).

It is a vectorial model which fully incorporates the Greenstein effect, and

accounts for the effects of beam resolution. Many parameters must be specified

in a Monte Carlo simulation such as this one. First of all, it is necessary to

94



o 1
00 00

2 o" rH
I—

H

o

o

m

2 7
Q

o

1-1 ^ h irj fj h
' rH ^—' cm

h o 6

O

o

Q
<<

o

o
o
ft
W

O O ^OOlHHpioiOOOdrlHN
CN

• CN 0*5

o
r-H O CO to
e*s i/5 o
C5 O

Ol Y-l

LO O to

<o oi o> o) oo n oiH h o n io CN hm d to io
rH v— CN "— tO Tji r-i r-i

LO
LOo

CO

CN

CM

to

CO too CM
CM

CN

ft
CD

CO

O
CN

co

LO LO
CO CO CO
o> Oi 05
T—

1

i—

1

i—

1

-w (J
O VO Q

Oi

o

to
CO
OS

eo
to

o

to
00

I—

I

0)

to
CN

o

05

to
CO
05

00o
CN

to

to
CO
Oi
rH

>->

i—

i

o

<J

w
o

>->

o

CD

rH

cu

u
CD

o

95



CM

H

o

H

o
o
O

I

>>

W
3

IS3
I

|
O
u
«J

O

6
o
U
<2

R3

PC*

Pi

O
•

-t-3

u

O

Ph

73

bO

co
OS

o

O

Ph"

2 7
Q
«<

(4

K
O

o
6

00

o

I

to

o 1

pi

o
to

a)

2 7
Q «

2
-

O 00

u
O
P.

o

i

Cfl

§ s
l-l M

""d-^d,^ ° ^ o n 6
r CO CN tJh CN CO OS

° » oi (N
CN N i—l

o
CO

LO
OS i—l

CO O LO

^ O) Ifl O (D
^| O M rf C3
O i-J O CN O

l—l LOO
co o

H N
CO CN to
HOP)

CO OSO LO
CN OS i-H

o oo io

O i-H

r^^^^^^'^^^^COlo'cOLfr lo t—
rjj as
to o

CO
CO

oo LO
as
CN

CO co
CD CO

CN

lO
co
as

tuD

Pi

<

1—

1

as LO 1—1 lO CO
CN CO CN CN
i—l i-H o i-H i—i i-J

lO LO LO LO t-
CO co CO CO co co
as OS OS as as as
i—i i—

1

i—

1

i—i i-H i—i

-t-a > > >>u U o oO O

SI SJ SI O O
o O O K «
Ph Ph O

H

96



Figure 4.1: Comparison of radio and UV gas production rates. In each
panel the diamonds show the UV gas production results for Comet Halley
(Feldman 1986) and the circles show our results. Pre-/Post-perihelion results
are represented by filled/open symbols. The top panel illustrates our Festou
vectorial model results while the bottom panel shows Radio Model 1986a
production rates. In each case Despois and SA values are connected by a
vertical line.
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specify the distribution of the OH parent molecules as they emerge from the

nucleus. Then parent molecules are sent outward from the nucleus with a

Particular velocity, VP . At some later time, photodissociation occurs and the

OH radical is formed. From this point OH goes in a random direction until the

time of its photodestruction with an additional velocity, VOH , which is added

vectorially to VP . Thus, the important parameters of this model are:

• parent production distribution

parent outflow velocity

parent lifetime against photodissociation

• OH velocity attained during parent photodestruction

• OH lifetime against photodissociation

Of these many parameters, the last three are related to the properties

of the molecules themselves, rather than the comet, and they are all known

(or knowable) from theoretical calculations. For this work, we adopt the

theoretical values of these parameters and attempt to constrain the remaining

parameters through fits to the data. The parent production distribution is

schematically modeled through the anisotropy parameter, AP, while the parent

outflow velocity, VP , is directly modeled.

We have run a grid of models covering AP-VP parameter space for each

comet. The grid spacing for AP values is typically 0.3 units, or roughly a

factor of 2 in the ratio of day-to-night emission, while the parent outflow
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velocity grid spacing is characteristically 0.2 km sec-. Both parameters are

allowed to vary until a best fitting solution is obtained.

For each combination of AP and VP , we have computed model spectra

and fit these spectra to the appropriate data, representing the quality of

the fits by values of x\. We have searched AP-VP parameter space for the

combination which produces the best fitting model for each spectrum. To

arrive at this combination we first determine a X\ value for each point in the

AP-Vp grid. We then fit a three-dimensional paraboloid to the X\ surface

in the vicinity of the minimum. From the minimium of that parabola we

derive the best parameter combination while the curvature of the paraboloid

is indicative of the errors in these parameters. In cases where the region

near the minimum X\ value on our (coarse) grid was not symmetric with

respect to either AP or VP we refined the grid spacing to properly isolate the

true minimum (Bevington 1969). For the July and October 1985 epochs of

P/Giacobini-Zinner we are only able to derive a lower limit for AP since the

quality of the fits are insensitive to changes in AP above a threshold value.

Our resulting X\ surfaces are shown in Figures 4.2a-p. In each of these

figures, the top panel is the X \ surface for models in which we used the SA

inversion curve, while the lower panel in each case shows the surface which

results from models in which we used the Despois inversion curve. In both

panels of each of these figures we have indicated the position of the derived

best AP and VP parameter combination along with their associated errors.
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Figure 4.2a: The X l surfaces derived from model fits to the Septembe
1985 P/Halley spectrum. The top panel illustrates the surface from models
using the Despois inversion curve, while the bottom panel shows the surface
from models using the inversion curve of SA. The lowest contour is at a xl
value of 1.0 and the contour spacing is 0.5. The dots represent grid locations
at which model spectra were generated. The inset boxes represent regions in
which we have sampled parameter space more finely.
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Figure 4.2b: The X \ surfaces derived from model fits to the October
1985 P/Halley spectrum. The top panel illustrates the surface from models
using the Despois inversion curve, while the bottom panel shows the surface
from models using the inversion curve of SA. The lowest contour is at a X l
value of 1.0 and the contour spacing is 0.5. The dots represent grid locations
at which model spectra were generated. The inset boxes represent regions in
which we have sampled parameter space more finely.
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Figure 4.2c: The X \ surfaces derived from model fits to the November
1985 P/Halley spectrum. The top panel illustrates the surface from models
using the Despois inversion curve, while the bottom panel shows the surface
from models using the inversion curve of SA. The lowest contour is at a X \
value of 1.0 (top) and 1.5 (bottom) and the contour spacing is 0.5. The dots
represent grid locations at which model spectra were generated. The inset
boxes represent regions in which we have sampled parameter space more
finely. The (unfortunate) touching/crossing of contours is an artifact of the
contouring scheme.
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Figure 4. 2d: The xl surfaces derived from model fits to the December
1985 P/Halley spectrum. The top panel illustrates the surface from models
using the Despois inversion curve, while the bottom panel shows the surface
from models using the inversion curve of SA. The lowest contour is at a xl
value of 1.5 and the contour spacing is 0.4. The dots represent grid locations
at which model spectra were generated. The inset boxes represent regions in
which we have sampled parameter space more finely.
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Figure 4.2e: The X J surfaces derived from model fits to the January
1986 P/Halley spectrum. The top panel illustrates the surface from models
using the Despois inversion curve, while the bottom panel shows the surface
from models using the inversion curve of SA. The lowest contour is at a X \
value of 1.0 and the contour spacing is 0.5. The dots represent grid locations
at which model spectra were generated.
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Figure 4.2f: The surfaces derived from model fits to the February
1986 P/Halley spectrum. The top panel illustrates the surface from models
using the Despois inversion curve, while the bottom panel shows the surface
from models using the inversion curve of SA. The lowest contour is at a Xl
value of 1.5 and the contour spacing is 0.5. The dots represent grid locations
at which model spectra were generated. The inset boxes represent regions in
which we have sampled parameter space more finely.
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Figure 4.2g: The X \ surfaces derived from model fits to the March 1986
P/Halley spectrum. The top panel illustrates the surface from models using
the Despois inversion curve, while the bottom panel shows the surface from
models using the inversion curve of SA. The lowest contour is at a X\ value of
1.5 and the contour spacing is 0.5. The dots represent grid locations at which
model spectra were generated.
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Figure 4.2h: The X\ surfaces derived from model fits to the May 1986
P/Halley spectrum. The top panel illustrates the surface from models using
the Despois inversion curve, while the bottom panel shows the surface from
models using the inversion curve of SA. The lowest contour is at a X\ value of
1.5 and the contour spacing is 0.5. The dots represent grid locations'at which
model spectra were generated. The inset boxes represent regions in which we
have sampled parameter space more finely.
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Figure 4.2i: The X\ surfaces derived from model fits to the July 1985
P/Giacobini-Zinner spectrum. The top panel illustrates the surface from
models using the Despois inversion curve, while the bottom panel shows the
surface from models using the inversion curve of SA. The lowest contour is
at a xl value of 1.4 and the contour spacing is 0.25. The dots represent grid
locations at which model spectra were generated.
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Figure 4.2j: The xl surfaces derived from model fits to the August
1985 P/Giacobini-Zinner spectrum. The top panel illustrates the surface from
models using the Despois inversion curve, while the bottom panel shows the
surface from models using the inversion curve of SA. The lowest contour is at
a xl value of 0.9 and the contour spacing is 0.125. The dots represent grid
locations at which model spectra were generated. The inset boxes represent
regions in which we have sampled parameter space more finely.
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Figure 4.2k: The X \ surfaces derived from model fits to the October
1985 P/Giacobini-Zinner spectrum. The top panel illustrates the surface from
models using the Despois inversion curve, while the bottom panel shows the
surface from models using the inversion curve of SA. The lowest contour is at
a xl value of 0.9 and the contour spacing is 0.0625. The dots represent grid
locations at which model spectra were generated. The inset boxes represent
regions in which we have sampled parameter space more finely.
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Figure 4.21: The xl surfaces derived from model fits to the October
1985 C/Hartley-Good spectrum. The top panel illustrates the surface from
models using the Despois inversion curve, while the bottom panel shows the
surface from models using the inversion curve of SA. The lowest contour is

at a xl value of 1.0 (top) and 1.5 (bottom) and the contour spacing is 0.5.
The dots represent grid locations at which model spectra were generated. The
inset boxes represent regions in which we have sampled parameter space more
finely.
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Figure 4.2m: The X \ surfaces derived from model fits to the November
1985 C/Hartley-Good spectrum. The top panel illustrates the surface from
models using the Despois inversion curve, while the bottom panel shows the
surface from models using the inversion curve of SA. The lowest contour is at
a xl value of 0.9 and the contour spacing is 0.125. The dots represent grid
locations at which model spectra were generated. The inset boxes represent
regions in which we have sampled parameter space more finely.
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Figure 4.2n: The xl surfaces derived from model fits to the November
1985 C/Thiele spectrum. The top panel illustrates the surface from models
using the Despois inversion curve, while the bottom panel shows the surface
from models using the inversion curve of SA. The lowest contour is at a X\
value of 1.25 and the contour spacing is 0.25. The dots represent grid locations
at which model spectra were generated. The inset boxes represent regions in
which we have sampled parameter space more finely.
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Figure 4.2o: The X\ surfaces derived from model fits to the March 1987
C/Wilson spectrum. The top panel illustrates the surface from models using
the Despois inversion curve, while the bottom panel shows the surface from
models using the inversion curve of SA. The lowest contour is at a xl value of
1.0 and the contour spacing is 0.5. The dots represent grid locations at which
model spectra were generated. The inset boxes represent regions in which we
have sampled parameter space more finely.
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Figure 4.2p: The *J surfaces derived from model fits to the May 1987
C/Wilson spectrum. The top panel illustrates the surface from models using
the Despois inversion curve, while the bottom panel shows the surface from
models using the inversion curve of SA. The lowest contour is at a X\ value
of 0.85 and the contour spacing is 0.0625. The dots represent grid locations
at which model spectra were generated. The inset boxes represent regions in
which we have sampled parameter space more finely.
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This series of figures illustrates the relative sensitivity of our model fits to

variations in the input parameters. To further illustrate this point, we present

in Figures 4.3a-p representative model spectra taken from the regions of the

Despois xl surfaces near the minima superimposed on their respective data.

Offset from these model-data pairs are the residuals of the fits. In Figures

4.4a-p we show the SA counterparts to Figures 4.3a~p. In both series of

fignres, the model in the center panel is that which results from the parameter

combination which is closest to the minimum on the x\ surface; VP increments

by 0.2 km sec"" (0.1 km sec"' for the November 1985 epoch of C/Hartley-

Good; Figures 4.3m and 4.4m) from left to right, while AP increments by 0.3

from bottom to top.

Examination of Figures 4.3a-p and 4.4a-p reveals that the degree to

which the model fits are dependent on the model parameters is a function

of the signal-to-noise of the data, as one should expect. Moreover, there are

cases where, on a fine scale, the synthetic spectrum obtained with one inversion

curve fits the data better than does that obtained with the other curve. Fine

examples of this are the model spectra for the October and November 1985

epochs of Comet H alley. The synthetic spectra generated using the SA curve

fit the data from these two epochs quite well except for at the very top of

the profile near VComet = 0 km sec" 1 (Figures 4.4b and c for October and

November 1985, respectively). On the other hand, the model spectra generated

with the Despois inversion curve fit the data very well everywhere, including
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Figure 4.3a: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
September 1985. The parameters for the center spectra are AP = +0.9 and
VP = 1.0 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3b: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
October 1985. The parameters for the center spectra are AP = +0.3 and VP
= 0.4 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3c: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
November 1985. The parameters for the center spectra are AP = 0.0 and VP- 0.4 km sec *; the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3d: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
December 1985. The parameters for the center spectra are AP = +0.3 and VP= 0.8 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3e: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
January 1986. The parameters for the center spectra are AP = 0.0 and VP
= 1.0 km sec

-1
;
the left-right velocity increments are 0.2 km sec

-1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3f: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
February 1986. The parameters for the center spectra are AP = +0.3 and VP
= 1.8 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3g: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
March 1986. The parameters for the center spectra are AP = +0.75 and VP= 1.6 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3h: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Halley from
May 1986. The parameters for the center spectra are AP = +0.6 and VP = 0.8
km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the bottom-

top AP increments are 0.3 units. Offset from the model/data pair are the
residuals from the model fit.
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4 ' 3l: A rePresentative sample of model spectra generated using

the Despois inversion curve superimposed on the spectrum of P/Giacobini-
Zinner from July 1985. The parameters for the center spectra are AP = +0.9
and VP = 0.6 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1

.

Offset from the model/data pair are the residuals from the model fit.
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Figure 4.3j: A representative sample of model spectra generated usir
the Despois inversion curve superimposed on the spectrum of P/Giacobini-
Zinner from August 1985. The parameters for the center spectra are AP
= -0.6 and VP = 0.6 km sec

-1
; the left-right velocity increments are 0.2

km sec 1 and the bottom-top AP increments are 0.3 units. Offset from the
model/data pair are the residuals from the model fit.
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Figure 4.3k: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of P/Giacobini-
Zinner from October 1985. The parameters for the center spectra are AP
= +1.5 and VP = 0.6 km sec" 1

; the left-right velocity increments are 0.2
km sec *. Offset from the model/data pair are the residuals from the model
fit.
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Figure 4.31: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of C/Hartley-Good
frorr^October 1985. The parameters for the center spectra are AP = -0.3 andVP _ 1.0 km sec 1

- the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3m: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of C/Hartley-Good
from November 1985. The parameters for the center spectra are AP = +0.3
and VP = 0.4 km sec

-1
;
the left-right velocity increments are 0.1 km sec" 1

and the bottom-top AP increments are 0.3 units. Offset from the model/data
pair are the residuals from the model fit.
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Figure 4.3n: A representative sample of model spectra generated using
the Despois inversion curve superimposed on the spectrum of C/Thiele from
November 1985. The parameters for the center spectra are AP = 0.0 and VP- 0.6 km sec 1

- the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3o: A representative sample of model spectra generated using
the Uespois inversion curve superimposed on the spectrum of C/Wilson from
March 1987. The parameters for the center spectra are AP = 0.0 and VP- 0.6 km sec the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.3p: A representative sample of model spectra generated using

M ioT
S^VerSi°n CUrVC SUPerimP°sed °n the spectrum of C/Wilson fromMay 1987. Ihe parameters for the center spectra are AP = 0.0 and VP = 0 6km sec

;
the left-right velocity increments are 0.2 km sec" 1 and the bottom-

top AP increments are 0.3 units. Offset from the model/data pair are the
residuals from the model fit.
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Figure 4.4a: A representative sample of model spectra generated using
the inversion curve of SA superimposed on the spectrum of P/Halley from
September 1985. The parameters for the center spectra are AP = +0.9 andVP = 0.8 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.

133



JTnrpTTTJTTTTJTTm

t i
1 1

1

1

1 1 1

1

1

1 1
1
rj-rmz

?
cd 100

£ 0 pfVV

-100

1
1

1 1 1 1 1

1

1 1

1

1 1 1

1

1

1 1 r

-10 -5 0 5 10
Vcomet (km/s)

Figure 4.4b: A representative sample of model spectra generated usingthe ^vemon curve of SA superimposed on the spectrum of P/Halley from
Uctober 1985 The parameters for the center spectra are AP = +0 3 and VP- 0.6 km sec

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4c: A representative sample of model spectra generated using
the inversion curve of SA superimposed on the spectrum of P/Halley from
November 1985. The parameters for the center spectra are AP - +0.3 andVP _ 0.6 km sec *; the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4d: A representative sample of model spectra generated using
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Figure 4.4e: A representative sample of model spectra generated using
the inversion curve of SA superimposed on the spectrum of P/Halley from
January 1986\ The parameters for the center spectra are AP = 0.0 and VP- 1.0 km sec the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4f: A representative sample of model spectra generated usingthe inversion curve of SA superimposed on the spectrum of P/Halley from
February 1986. The parameters for the center spectra are AP = +0.3 and VP- 1.8 km sec

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4g: A representative sample of model spectra generated using

March 1986. The parameters for the center spectra are AP = 0.0 and VP- 1.6 km sec
;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4h: A representative sample of model spectra generated using

ulZTTre S

T
eTPOSed °n thG SP6CtrUm °f W from

6

May 1986. The parameters for the center spectra are AP = -0.3 and VP- 0 4 km sec
;
the left-right velocity increments are 0.2 km sec" 1 and thebottom-top AP increments are 0.3 units. Offset from the model/data pair arethe residuals from the model fit.

140



Figure 4.4i: A representative sample of model spectra generated using

^TrZTll ^'^Posed on the spectrum of P/Giacobini-Zinner

_Tfi t i

Parameters ^ the center spectra are AP - +0.9 and VP- 0.6 km sec
;
the left-right velocity increments are 0.2 km sec" 1

Offset
from the model/data pair are the residuals from the model fit
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Figure 4.4j: A representative sample of model spectra generated using
the inversion curve of SA superimposed on the spectrum of P/Giacobini-Zinner
from August 1985. The parameters for the center spectra are AP = -0 6 andVP _ 0.6 km sec the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4k: A representative sample of model spectra generated using
the inversion curve of SA superimposed on the spectrum of P/Giacobini-Zinner
from October 1985. The parameters for the center spectra are AP = +2.1 and
VP = 0.6 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1

. Offset
from the model/data pair are the residuals from the model fit.
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Figure 4.41: A representative sample of model spectra generated usingthe inversion curve of SA superimposed on the spectrum of C/Hartley-Good
from October 1985. The parameters for the center spectra are AP = 0 0 andVp 1.0 km sec the left-right velocity increments are 0.2 km sec" 1 and the
bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4m: A representative sample of model spectra generated usingthe inversion curve of SA superimposed on the spectrum of C/Hartley-Good
from November 1985. The parameters for the center spectra are AP = +0 3and Vp = 0.4 km sec" 1

;
the left-right velocity increments are 0.1 km sec" 1

and the bottom-top AP increments are 0.3 units. Offset from the model/data
pair are the residuals from the model fit.
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Figure 4.4n: A representative sample of model spectra generated usingthe inversion curve of SA superimposed on the spectrum of C/Thiele from
November 1985. The parameters for the center spectra are AP = 0.0 and VP- 0.6 km sec

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4o: A representative sample of model spectra generated using
the inversion curve of SA superimposed on the spectrum of C/Wilson from
March 1987. The parameters for the center spectra are AP = +0.3 and VP- 0.6 km sec l

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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Figure 4.4p: A representative sample of model spectra generated using
the inversion curve of SA superimposed on the spectrum of C/Wilson from
May 1987. The parameters for the center spectra are AP = +0.6 and VP= 1.0 km sec" 1

;
the left-right velocity increments are 0.2 km sec" 1 and the

bottom-top AP increments are 0.3 units. Offset from the model/data pair are
the residuals from the model fit.
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using

the tops of the p rofi,es (Figures 4.3b and ,). The inabi% rf^
the SA inversion curve to properly fit the top of the November !985 P/Mey
spectrum was noticed originaUy by Taccon,Garman Md Sch]oerb (i987b; ^
a.so Sch,oerbl Claussen, and Tacconi-Garman 1987). Other cases where mode,
using one inversion curve fit the data marginally better than those nsing

the other cnrve are in March 1986 (P/Halley; Figures 4.3g and 4.4g) and in

March 1987 (C/Wdson; Figures 4.3o and 4.4o). ,„ the former case the mode,

spectrum generated using the Despois curve has a more pronounced "dimple"

at the bottom than does the SA spectrum. Thus, the Despois generated

spectrum does a slightly better job of matching the flat bottom of the data.

Both synthetic spectra, however, are wider than the data. In the case of the

models for the March 1987 observations of C/Wilson, we note that the model

using the SA inversion curve fits the edges of the observed profile a bit better

than the model using the Despois curve does. Both model spectra fall short,

however, in properly reproducing the very bottom of the spectrum.

The only example, however, where a model using one inversion curve

clearly represents the data better than a model which uses the other curve

is in the case of the May 1986 epoch of P/Halley. As mentioned in Chapter

2 (see also Figure 2.1h), there is a real emission feature to the blue side of

the dominant absorption line in this data. Close examination of Figures 4.3h

and 4.4h show that, in fact, only the Despois model has an emission feature

which corresponds to the emission in the data. To demonstrate that emission

149



at this velocity natUrally follows from the Despois inversion curve, We present

in Figure 4.5 the data from this epoch (top) and appropriate portions of the

Despois and SA inversion curves (bottom). For this figure the velocity scales

of the inversion curves have been corrected for the velocity of the comet with

respect to the earth and the phase angle of the observations,
fi. Here we

see that the range of gas velocities in the coma during that epoch actually

span a crossing point of the Despois inversion curve, whereas the SA curve

crosses Zero at a lower velocity. Molecules traveling with velocities less than

1.22 km sec- with respect to the earth should have positive inversions,

according to the Despois curve, and hence should be seen in emission. This

is precisely what is seen in the data.

In the majority of cases, though, there is little significant difference in

the quality of the fits generated from models using either inversion curve. This

is hardly surprising in light of the fact that at the heliocentric velocities of the

epochs in this study there is little difference in the shape of the inversion curves

(Figure 4.6)
1

. This similarity is also reflected in the agreement between most

of the xl surfaces and the derived values for AP and VP for the two models.

To further demonstate this lack of sensitivity to the inversion curve used, we

have plotted in Figure 4.7 the difference in derived VP values versus

1 This does not contradict statements in the last section referring to large differences
between the curves. Since we scale our model spectra in a "brute force" manner to fit the
data, the magmtude of the inversion is not very critical to our model results, assuming we
are not near a crossing point for either curve. On the contrary, what is important for
reproducing the observed line profiles is the shape of the inversion curve over the velocity
range covered by the gas in the coma. In deriving the production rates, on the other hand,
we use a single value at a particular heliocentric velocity.
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Figure 4-5: The May 1985 P/Halley spectrum (top) and relevant
portions of the Despois and SA inversion curves (bottom). Note the
coincidence between the crossing point of the Despois curve and the transitionIrom absorption to emission in the data.
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Figure 4.6: The Despois and SA inversion curves. The tick marks
axis represent the heliocentric velocities of the cornets in this thesis.
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the difference in derived AP values. The cluster of points near the^ rf

this plot indicates that the valnes we derive for these kinematic parameters

are primarily independent of the inversion curve used. For one of the three

outlying points in this plot, C/Wilson in May 1987 (a) we derive AP values

which differ by 0.57, or a factor of -3.5 in the day-to-night gas outflow ratio.

Point (b) in Figure 4.7 represents the March 1986 Comet Halley epoch, which

was mentioned above. In neither of these cases is there compelling evidence to

prefer one inversion curve over the ntW tu c i j-over tne other. The final discrepant point, P/Halley

in May 1986 (c), was also discussed above.

To determine final values for the modeled kinematic parameters we have

averaged the AP and VP values obtained using the Despois and SA inversion

curves. The exception to this, of course, is the May 1986 epoch of Halley for

which we use the AP and VP values derived using the Despois inversion curve.

The errors on our adopted AP and VP values are derived from the difference

in values when using these two inversion curves. A complete summary of our

derived AP and VP values is found in Tables 4.3 and 4.4.

4.3.2 AP Results

Except for the cases of the P/Giacobini-Zinner model results, which are

discussed at the end of this section, all of our adopted AP values fall in the

range ~0 to 0.8, with errors in individual determinations roughly scaling with

the cosine of the phase angle, (3. We expect such a dependence for this
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error since our sensitivity to the day/night ontgassing ratio depends on the

component of the day-night outflow differential which lie* on the line-cf-sight

to the comet. That is, our observations at small phase angles are far more

sensitive to the effects of anisotropic emission than our observations at large

phase angles.

In addition, we derive an average value for AP of 0.29±0.04, implying

that typically twice as much gas flows into the day hemisphere of the coma as

flows into the night hemisphere. In addition, we find that the coma anisotropy

is independent of both heliocentric distance (Figure 4.8) and gas production

rate (Figure 4.9). Gas anisotropics this low are in contrast with that found

for the dust in the coma (Keller et al 1986a, b; Edenhofer et al. 1987). These

AP values are not surprising, however, when viewed in light of coma gas

distributions derived by a number of authors (see below).

To put things in perspective for comparison to the results of other

authors, we must first consider the length scales over which our results are

most appropriate. As listed in Tables 2.1 and 2.2, the 18' beam of the 43-meter

telescope at NRAO corresponds to a physical dimension of ~106 km at the

distance of the comets during our observations. Therefore, our model results

indicate that at distances of ~5 x 105 km from the nucleus there is still

evidence for gas anisotropics of factors of 2-4. Specifically, for the March 1986

epoch (our closest to the time of the spacecraft encounters) we infer an
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Figure 4.8: Adopted AP values as a function of heliocentric distance.
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AP of 0.38±0 .49 within 3, x 10, km of the nudeus cMresponds to ^

day/night asymmetry of a factor of 2.4
(+J-«).

Evidence for anisotropics in the gas distribution at smaller radi i comes
from a variety of sources. Krasnopolsky et a,. (1987) have modeled 1.38 „m
water data taken by the three-channel spectrometer (TKS; Krasnopolsky et

al. 1986) onboard the Vega 2 spacecraft and find that 40% of the water in

the inner J000-2000 km of the coma of Halley was confined to a cone with

an opening angle of 20±5°. Assuming that the remaining 60% is evenly

distributed about the nucleus, this implies a day-to-night ratio of ~2 in

this region. Larger regions of the coma (r £ 12500 km) were probed on

24 December 1985 and 22 March 1986 (close to the time of the spacecraft

encounters) by the 2.65 Mm water observations of Larson et al. (1986). They

find that both their pre- and post-perihelion data are consistent with a coma

gas outflow morphology which is a superposition of an isotropic flow and a

sun-directed enhanced flow. That is, their data are compatable with a slightly

anisotropic flow. In addition, similarly sized regions in Comet Halley were

probed by the HCN observations of Schloerb et al. (1987). They find a net

blueshifting of the main (F=2-l) hyperfine component which, given the phase

angles at the times of their observations, is suggestive of an enhancement in

the emission into the day hemisphere.

That such anisotropics can persist to large distances is demonstrated

by the neutral particle density profiles deduced from data collected by the
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PLASMAG-1 instruments on Vega 1 and Vega 2 (RemiZOv et al 1986).

Rennzov et al present experimental results which indicate that there were

factors of 2-3 difference in the neutral gas densities at distances of 3 x 10- km
*om the nucleus of Comet Halle, between the inbound and outbound legs of

the encounters. Similar inbound-outbound gas asymmetries were measured out

to a distance of 10- km by the Neutral Gas Experiment (NGE) on the Vega 1

spacecraft (Curtis et al 1986). Hsieh et al (^QK7\ h i
• , ,j

nsien et al. (1987) have explained this observed

inbound-outbound discrepancy in term* nf aT1pancy m terms of an coma gas asymmetry of a factor

of 2-6 at this distance from the nucleus.

Finally, the VLA images of the 18-cm line of OH (de Pater, Palmer,

and Snyder 1986) provide father evidence for anisotropics of factors of ~2 at

distances of 10* km from the nucleus. Since anisotropy in our model is treated

as strictly day-night, one must be careful in directly comparing our results to

any others which treat only the dayside of the coma. However, the coma gas

anisotropics that we derive from the 18-cm OH line profiles are consistent with

those inferred from a variety of other observations.

As mentioned above, however, our AP results for Comet Giacobini-Zinner

are unlike all others. For this comet we infer grossly anisotropic flows into

either the day hemisphere of the coma (in July and October 1985) or the night

hemisphere of the coma (in August 1985). This extreme inferred anisotropy

could be evidence for a phase lag in the outflow of gas from the nucleus of this

comet. If the gas productivity of the nucleus was strongest in the afternoon
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tions.

that the outflowing gas was directed primarily towards the earth. As we model
strictly day-night anisotropics, the large shift in the line profile produced by

this afternoon outflow would be mapped into an anomalously high value for

our parameter AP. However, if this explanation is correct we are confronted

with the question of why we such effects are not seen for observations of any

other comets at large phase angles.

4.3.3 VP Results

Unlike the AP results we have derived, the parent outflow velocities

we infer are a function of heliocentric distance. This is shown in Figure 4.10

where the filled circles represent our adopted parent outflow velocities. This

figure is strikingly similar to Figure 2.3 in which the line widths of the data

are plotted as a function of heliocentric distance. Therefore, the natural

explanation for the broadening of the 18-cm OH lines as a comet nears the sun

is an increase in the parent gas velocity.

A comparison of our outflow velocity results to values derived by other

authors from a variety of observations is shown in Figure 4.11. We see in this

figure that this analysis of 18-cm OH line spectra has yielded outflow velocities

(filled circles) which are consistent with these other measures (HCN [open

circles]: Bockelee-Morvan et al. 1986, Schloerb et al. 1987; H 20 [filled squares]:

Lammerzahl et al. 1986, Larson, Mumma, and Weaver 1987; CN Jets/Shells
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Figure 4.11: Comparison of adopted VP values and other indicators of
the coma gas expansion velocity. Curve (b) shows the velocity dependence of
Delsemme (1982). Curve (a) shows the same heliocentric distance dependence
with a rescalmg to the often used 0.8 km s" 1 outflow at Rh = 1 A.U
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[Med trianglesl: A>Hearn ei a, 19g6i Sch]osser) Schu]tZ)^^^
From this we infer that our choices for parameters ^ ^
and daughter lifetimes are UMy correct. Since at large heliocentric distances

the velocity of the OH molecules is larger than that of the parent molecules,

Hnewidths for comets far from the sun are more strongly influenced by the

daughter velocity than for comets near the sun. Therefore, the suggestion low

inferred outflow velocities at larger heliocentric distances may indicate that the

average OH velocity given by the work of Crovisier (1988) is too large.

Also shown in this figure is the outflow velocity law derived by Delsemme

(1982; curve (b)) from observations of a number of comets. Clearly this law is

inadequate for representing the derived outflow velocities from this and other

studies. Most of our derived outflow velocities lie above this line, as was found

previously by Schloerb et al. (1987) in their study of HON lines in Comet

Halley.

The exponent in the Delsemme outflow velocity relationship was derived

by equating the coma heating and cooling rates. For heating mechanisms,

Delsemme cites photoexcitation of molecules followed by collisional de-

excitation and photodissociation or photoionization of molecules yielding

superthermal fragments which then collide with the ambient gas (photolytic

heating). Since these processes depend on the solar flux for their start, their

heliocentric distance dependence should follow conservation of flux. That is,

heating rate oc N R^ 2
,
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where N i8 the gas densitv (note this presentat;on Qf equation (g) ^ Msemme
uses sHgM, different notation from

cooHng

he adopts the woric of ShWu (W6) who suggested^^
transitions were efficient and argued that the cooling shon.d be .nodded as

cooling rate oc T2 N

where T is the temperature of the gas. Equating these two expressions and

using the fact that the therma! speed of a gas is proportiona! to the square

root of its temperature, Delsemme arrives at anV « dependence for the

outflow velocity.

Since that time, Crovisier (1984) and Bockelee-Morvan (1987) have

reexamined the radiative transfer of water lines in the comae of comets and

have found that the water rotational lines invoked by Shimizu (and adopted

by numerous others, see references in Crovisier 1984) for cooling the gas are

actually optically thick in the inner coma. This means that the efficiency of

these lines as coolants is lower than previously thought. Therefore, photolytic

heating plays a more dominant role in determining the temperature, and

hence, velocity distribution in the coma.

Since the coma expansion velocity is a strong function of the photolytic

heat input, it must follow the heating rate dependence cited above. That

is, the steep rise in parent gas velocity as a comet nears the sun must be

not only a function of the decrease in heliocentric distance but also of the
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of the nucleu, This „ supported by the thermodynam;c_ modding
of Crovisier

(1984 )
and Bockelee-Morvan and Crovisier

(1987) who find

an increase in the coma expansion velocity with gas productivity above a

threshold of ~102
* molecules sec^ (at ! A.U, when all othfir _

held constant. Additional theoretical work on this subject includes the dusty-

gas-dynamic/Monte Carlo coma modeling of Combi (1989) . He finds that an

increase in the gas productivity of the nucleus results in greater collisional

coupling between the fast H atQms (created ^ photod
.

ssodat
.

on ^
water) and the molecules of the coma at large distances from the nucleus.

That is, the point at which the fast H atoms decouple from the rest of the gas

is pushed further out into the coma as the gas production rate increases. This

increased collisional rate results in a hotter coma which, in turn, increases the

outflow velocity.

Observational evidence for this effect was cited by Colom et al (1987)

in their recent paper on OH radio lines in comets. They have determined

line widths from a series of observations of Comets Halley and Wilson and

see an increase with decreasing heliocentric distance. Without attempting to

disentangle the OH and parent gas velocities from their profiles, they have

suggested that an increase in parent gas velocity through photolytic heating

is responsible for this broadening trend. As support for this they show in

their Figure 9 the measured line widths as a function of Qp/Rj (note that our
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notation i, 8HgHtlv different from theirs) in^ .^ ^^^^
with the model calculations of Bocke.ee-Morvan and Crovisier (1987).

One derived parent gas outflow velocities are completely consistent with

this scenario. We have found that our results do not agree with the curve of

Delsemme which was derived under the assumption that the cooling of the

coma through water rotationa. Hues was as important to the thermodynamics

of the coma gas as the heating due to photolytic processes, fnstead, our results

illustrate that the net heating of the coma as the comet nears the sun must

be more rapid. And, as with the study of Colom el ai, we argue that the

increase in gas productivity as a comet approaches the sun directly results in

an increase in the expansion velocity of the coma.

Furthermore, our data provides evidence that the difference in pre-

and post-perihelion gas production rates at a fixed heliocentric distance are

sufficient to result in differences in the coma kinematics. Although the January

and March 1986 observations of Comet Halley were both made at times when

the comet was at a heliocentric distance of 1 A.U. we infer parent outflow

velocities of 1.02±0.10 km .-> and 1.60±0.07 km s~\ respectively. Within a

few days of these observations, Larson el al. (1986) made their observations

of the water molecule in Comet Halley. From these observations they infer

similar gas outflow velocities (0.9±0.2 km s" 1
in late December 1985 and

1.4±0.2 km in March 1986), while their derived gas production rates are
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1029 ^ 1030
~*>«M*— production rates ;n

Ms model Combi (1989) is ab ,e to a pre./post_periheiion veiodty

parity of the size observed. The production rates deduced trom our 0H
observations of JanuaryandMarchl986 are(7±3) ^ ^^ ^^^ ^
10" molecules sec- which are consistent with those derived from the water
observations and used in the model of Combi. Therefore, the difference in

the outflow velocities derived from the OH data is most Kkely an effect of the

increased post-perihelion gas production rate.

We finally note that our assertion here that the gas production rate

has a direct impact on the inferred outflow velocity is not weakened by the

derived parent outflow velocities for the few comets observed at a heliocentric

distance of 1.3±0.1 A.U. (Tables 4.3 and 4.4) In Figure 4.12 we show the

derived parent outflow velocity as a function of gas production rate for all the

comets in this study. This plot illustrates that at all heliocentric distances the

the parent outflow is relatively insensitive to the gas production rates for low

production rates.

le one-
To illustrate that this is indeed what one expects based on simpl

dimensional pure-gas thermodynamic models of the coma, we present in Figu

4.13 the results of our model calculations based on the work of Bockelee-

Morvan and Crovisier (1987). For this figure we have run a grid of models

covering log QOH-Rh parameter space. For each model run we have defined

the point in the coma where the gas decouples to be where the collisional
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Figure 4.12: Adopted parent gas outflow velocity as a function of thelog ol the gas production rate.
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Figure 4.13: Outflow velocity as a function of the log of the gas
production rate and heliocentric distance. The numbers within the plot areour derived VP values The contours are in steps of 0.2 km sec- (increasing
towards the upper left) and the minimum contour is at 1.0 km sec" 1
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Point, which should correspond tQ_ jnferred ^^ tave^^ ^

numbers in the log QoH-Rh plane. We See from this figure that such mode[s
predict an inerease in the outflow velocity with both heliocentric distance and
gas production rate. However, we note that our derived values fa the outflow

velocity typically fell below those predicted by the thermodynamic mode,. To
test whether the introduction of dust into a mode, such as this results in gas

outflow velocities which are more consistent with those we have derived from
the data (see below), we have compared our results for Comet Halley to those

of the dusty-gas-dynamic/Monte Carlo coma modeling of Combi (1989), shown

in Figure 4.14. We see in this figure that the predicted gas outflow velocity

agrees rather well with our derived values for small heliocentric distances (the

discrepancy for the March epoch is likely due to differences in adopted gas

production rates) but that at large heliocentric distances our derived outflow

values lie systematically below the predicted values. This disparity remains a

puzzling issue. One suggestion for its cause is that the simplification of such

models to one-dimensional treatments may result in an overestimate of the

parent gas outflow velocity. As mentioned above, the low inferred outflow

velocities at larger heliocentric distances could also indicate that the average

OH velocity given by the work of Crovisier (1988) is too large.
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Figure 4.14: Comparison of derived parent gas outflow velocities with
dusty-gas-dynamic/Monte Carlo modeling predictions. Circles represent the
model results of Combi (1989), while the triangles show our Comet Halley
results Filled symbols are used for preperihelion values, while open symbols
are used for postperihelion values.
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We finally remark that there Me^^ rf^^^^
for which we have no high resolution, high signal to noise^ To^ ^
models of the coma such as those of Hochelee-Morvan and Crovisier

(1987)

and Combi (1989) to the tegt Wfi need a samp]e Qf spectra from_ ^ ^

wide range of gas productivities, at many he.iocentric distances, especially low

heliocentric distances. Until snch a complete sample is available, however, we
should be content with analog data from the low productivity comets at

many heliocentric distances. Such comets are quite common and interesting

kinematically. We have already mentioned P/Giacobini-Zinner as an example

of such a comet. Another example from this thesis is Comet Hartley-Good.

The interesting feature of this comet is its unusually narrow OH line for

a comet at a heliocentric distance less than 1 A.TJ. (during the November

1985 epoch; Figures 2.1m and 2.3). In fact, this comet shows a narrowing of

the line profile with decreasing heliocentric distance, and we have inferred a

corresponding decrease in the parent gas outflow velocity. This phenomenon

could possibly be explained if the dust-to-gas ratio in the coma increased

during the November epoch. The net result of the introduction of large

quantities of dust into a cometary coma is to mass load the outflowing gas

thereby slowing it down (Combi 1989). We find no evidence in the literature,

however, to indicate such an increase in the coma dust content for this comet

and the exact cause for the decrease in outflow velocity remains uncertain.
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CHAPTER 5

SUMMARY
Comet Halley has a unique place in history. Since the time of

Halley himself the reappearence of this comet has been awaited with great

anticipation. This lastest apparition was no exception, as the International

Halley Watch and the astronomical community as a whole poised at the

ready to undertake an unprecedented observational campaign. The fruits of

this labor have begun to appear. There have been several large and small

conferences on the subject of cometary science or some facet of cometary

science. In addition, an entire volume of Astronomy and Astrophysics has been

devoted to the results from observational studies of Halley's Comet.

As part of this wave of exciting cometary studies, we have made a series

of observations of the 18-cm lines of OH in Comets Halley, Giacobini-Zinner,

Hartley-Good, Thiele, and Wilson. These are the highest sensitivity, highest

spectral resolution cometary radio OH data ever taken and as such they have

served as the impetus behind this project. These data also represent the

observational backbone for this thesis.

We have calculated gas production rates from the OH spectra in this

thesis. Since the parameters for Radio Model 1986a (Schloerb, Claussen,

and Tacconi-Garman 1987) are closer to our chosen and derived parameters

than those of the Festou vectorial model (Festoul981a, b)(see below) we have

adopted Radio Model 1986a to correct our observed integrated intensities



le same.

for the effects of beam reso.ution and we encourage others to do th,

Furthermore, we have corrected the observed radio integrated intensities for

the effects of quenching of the OH A-doublet (Schloerb 1988). This is the first

time such a correction has been systematica,* applied to radio OH data. We
find, as was suggested by Schloerb, that through this quenching correction the

radio gas production rate estates can be made to agree with those derived

from UV observations of OH in comets, which do not suffer from the effects

of quenching. Indeed, this illustrates that the long standing UV/radio gas

production rate disparity has been explained at last. The problem which

remains is to ascertain which inversion curve is most appropriate for any

given heliocentric velocity. We have found one range of heliocentric velocity

over which the inversion curve of Despois et al. (1981) is most appropriate

(see below). However, at present uncertainties as to which inversion curve

to adopt for most heliocentric velocities leads to large uncertainties in radio

determinations of the gas production rate.

To model the observed spectra we have constructed a Monte Carlo model

for the coma of a comet. This model, which is based on the fundamental

work of Combi and Delsemme (1980a), is a ballistic vectorial simulation of a

cometary coma which incorporates a wide variety of physical processes. For

the best constrained input parameters we have adopted nominal values from

the literature (Table 5.1). To describe the excitation of the OH A-doublet we

have used both the inversion curve of Despois et al. (1981) and that of
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Parameter

Parent (Water) Lifetime

OH Lifetime

OH Velocity Distribution

OH inversion

Table 5.1

Model Parameters

Value

8.2 xlO 4
sec

'1x10 s
sec

Source

Festou 1981b

van Dishoeck and Dalgarno 1984

Crovisier 1988

Despois et al. 1981

Schleicher and A'Hearn 1988

Schleicher and A'Hearn (1988). We have then solved for the remaining coma

kinematic parameters, the parent gas outflow velocity (VP ) and the anisotropy

of that flow (through the anistropy parameter, AP).

For each combination of outflow velocity and outflow anisotropy

parameter we have generated a spectrum. Each of these spectra are fit

to the respective data through a "brute force" scaling and we define the

quality of that fit in terms of the X\ statistic. The best kinematic parameter

combination for any given epoch is that combination which produces the

lowest value for X \. We find from this analysis that, in general, our model

results are insensitive to the particular inversion curve being used. In only

a few cases does the model spectrum generated using one inversion curve fit

the observed profile slightly better than the model spectrum resulting from

the other inversion curve. The prime exception to the relative insensitivity of

our model results to the choice of inversion curve is for the case of the May

1986 observations of Comet Halley. At the heliocentric velocity of the comet
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s seen

~23

an emission feature on the Wue side rf^^ ^ ^ _

in the data from that epoch . _^ ^
- -27 km s- the inversion Qf QH h com<;tary comM ^ ^
that inversion curve.

The anisotropy in the coma gas outflow i. independent of heliocentric

distance, except perhaps for the case of Comet Giacchini-Zinne, ,„ addition
,

we have inferred an average day-to-night anisotropy of 2:1 for the parent

gas. This is in contrast to that fonnd for the dnst in the coma „f Bailey's

Comet (Keller „ al. 1986a> b . Edenhofer „ ^^ ^ fa ^
the anisotropy derived from a wide variety of ground based and in situ

observations (see refereneces in Chapter 4). P/Giacobini-Zi„ner, on the other

hand, shows anomalously anisotropic gas emission. This phenomenon could

be explained in terms of an enhancement of gas productivity during the

afternoon on the nucleus of this comet. Observations of this comet during

future apparitions may help to confirm this explanation for the origin of this

peculiar gas flow morphology.

Our derived outflow velocities are consistent with those inferred from a

number of other indicators of the coma expansion (see references in Chapter

4). From this concurrence we infer that our choices for such model parameters

as the parent and daughter lifetimes. The suggestion of unusually low outflow

velocities at large heliocentric distances may indicate that the mean OH

178



velocity of Crovisier (1988) may be too high We also «• •ugn. we also see a rise in the outflow
velocity for heliocentric distances smaller than about IAD It is thi

•

* it is this increase

which is responsible for the broad 18-cm OH lines seen for comets near the
sun. This rise in outflow velocity cannot be attributed strictly to the effect

of heliocentric distance. Rather, the increased gas production rate normally

turn leads to increased coma expansion velocities (Crovisier 1984; Bockelee-

Morvan and Crovisier 1987; Combi 1989). A striking demonstration of this

Phenomenon is seen in the data from the January and March 1986 epoch for

Comet Halley. At these times the comet was at a heliocentric distance of 1

A.U. but we infer gas outflow velocities of 1.02 and 1.60 km sec- for these two

epochs, respectively. Our estimated production rate difference is sufficient to

account for this difference in outflow velocities (see Combi 1989 and references

therein).

No signature of the dependence of the outflow velocity on the

productivity of comets is seen in a sample of our data from comets near

a heliocentric distance of 1.3 A.U. From this we conclude that at this

heliocentric distance the gas production rate must be larger than 3xl0 29

molecules sec"* to influence the coma expansion. We also find that one-

dimensional dynamic models of the coma (Bockelee-Morvan and Crovisier

1987, Combi 1989) cannot account for the low outflow velocities we derive

from data from Comet Halley far from perihelion. In addition, a peculiar trend
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is seen in the case of the relatively^^^^ ^
of the observed 18.cm UM for this comet actually decreases with decrea,„g
heliocentric distance. We have derived a corresponding decrease in the parent

gas expansion velocity. The cause for this decrease is unknown.

Finally, we would like to have more high quality cometary 18-cm OH
data. This would allow us to fill i„ the log QoH-Rh plane to really put

coma gas dynamic models to the test. We would also be able to determine

how common it is for coma outflow velocities to decrease with decreasing

heliocentric distance and perhaps through coma modeling find an origin

for this phenomenon. As mentioned above, because of its unusual gas

outflow properties we would like to have observations of future apparitions of

P/Giacobini-Zin„er. Additional observations of a wide variety of comets will

help to determine if this comet is alone in the kinematic behavior of its coma.

In short, high spectral resolution, high sensitivity observations of the 18-cm

lines of OH in comets have been and should continue to be very enlightening in

the important study of the kinematics of cometary comae.
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