1,675 research outputs found

    Star Formation and Dynamics in the nuclei of AGN

    Full text link
    Using adaptive optics on Keck and the VLT in the H- and K-bands, we have begun a project to probe the dynamics and star formation around AGN on scales of 0.1arcsec. The stellar content of the nucleus is traced through the 2.29micron CO2-0 and 1.62micron CO6-3 absorption bandheads. These features are directly spatially resolved, allowing us to measure the extent and distribution of the nuclear star forming region. The dynamics are traced through the 2.12micron H_2 1-0S(1) and 1.64micron [FeII] emission lines, as well as stellar absorption features. Matching disk models to the rotation curves at various position angles allows us to determine the mass of the stellar and gas components, and constrain the mass of the central black hole. In this contribution we summarise results for the two type~1 AGN Mkn231 and NGC7469.Comment: contribution to "The interplay among Black Holes, Stars and ISM in Galactic Nuclei", March 200

    Eddington limited starbursts in the central 10pc of AGN, and the Torus in NGC1068

    Get PDF
    We present results from a survey of nearby AGN using the near infrared adaptive optics integral field spectrograph SINFONI. These data enable us to probe the distribution and kinematics of the gas and stars at spatial resolutions as small as 0.085arcsec. We find strong evidence for recent but short lived starbursts residing in very dense nuclear disks. On scales of less than 10pc these would have reached Eddington-limited luminosities when active, perhaps accounting for their short duration. In addition, for NGC1068 at a resolution of 6pc, we present direct observations of molecular gas close around the AGN which we identify with the obscuring torus.Comment: Conference proceedings to appear in "The Central Engine of Active Galactic Nuclei", ed. L. C. Ho and J.-M. Wang (San Francisco: ASP

    Local causes, regional co-operation and global financing for environemntal problems: the case of Southeast Asian Haze pollution

    Get PDF
    Lack of action on cross-border environmental problems in developing countries is often ascribed to gaps in local capacity and resources, failure of regional cooperation, and lack of financial support from rich countries. Using the case of the Southeast Asian Haze pollution from forest and peat fires in Indonesia, we explore the challenges posed by environmental problems whose causes are closely linked to local development and livelihood strategies, and whose impacts are local, regional (haze) as well as global (carbon emissions). We assess whether there are real opportunities to implement effectively the recent Association of Southeast Asian Nations (ASEAN) Agreement on Transboundary Haze Pollution. To address the deep determinants behind haze pollution, we propose signatories to the Agreement refocus their efforts to controlling peat fires rather than strive for a zero-burning regime. We also recommend a new approach to financing sustainable development based on rules and incentives, with a regional pool of funds, contributed by rich countries through the Global Environment Facility and countries in Southeast Asia.ASEAN, climate change, fires, GEF, haze pollution, regional agreements

    Stellar and Molecular Gas Kinematics of NGC1097: Inflow Driven by a Nuclear Spiral

    Full text link
    We present spatially resolved distributions and kinematics of the stars and molecular gas in the central 320pc of NGC1097. The stellar continuum confirms the previously reported 3-arm spiral pattern extending into the central 100pc. The stellar kinematics and the gas distribution imply this is a shadowing effect due to extinction by gas and dust in the molecular spiral arms. The molecular gas kinematics show a strong residual (i.e. non-circular) velocity, which is manifested as a 2-arm kinematic spiral. Linear models indicate that this is the line-of-sight velocity pattern expected for a density wave in gas that generates a 3-arm spiral morphology. We estimate the inflow rate along the arms. Using hydrodynamical models of nuclear spirals, we show that when deriving the accretion rate into the central region, outflow in the disk plane between the arms has to be taken into account. For NGC1097, despite the inflow rate along the arms being ~1.2Msun/yr, the net gas accretion rate to the central few tens of parsecs is much smaller. The numerical models indicate that the inflow rate could be as little as ~0.06Msun/yr. This is sufficient to generate recurring starbursts, similar in scale to that observed, every 20-150Myr. The nuclear spiral represents a mechanism that can feed gas into the central parsecs of the galaxy, with the gas flow sustainable for timescales of a Gigayear.Comment: accepted by Ap

    Ultra-Luminous Infrared Mergers: Elliptical Galaxies in Formation?

    Get PDF
    We report high quality near-infrared spectroscopy of 12 ultra-luminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are 'ellipticals-in-formation'. Random motions dominate their stellar dynamics, but significant rotation is common. Gas and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution sensitive, r(eff)-sigma projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane and their distribution of v(rot)*sin(i)/sigma closely resemble those of intermediate mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas rich, disk galaxies while giant ellipticals with large cores have a different formation history.Comment: submitted to Ap

    A multi-wavelength study of the peculiar galaxy NGC 2976

    Get PDF
    Researchers are currently studying NGC 2976 at many wavelengths to investigate the extent to which an interaction with M81 may have affected the star formation history of this galaxy. Here, researchers present observations of NGC 2976 made at 50 microns with the high resolution (CPC) instrument onboard Infrared Astronomy Satellite (IRAS) at 21-cm (both HI line and radio continuum) with the Westerbork Synthesis Radio Telescope (WSRT) and in the H alpha line with the Kitt Peak National Observatory (KPNO) 36 inch telescope. The far infrared emission is not centrally peaked as in other spirals (e.g., Wainscoat et al. 1987), but has obvious intensity peaks near the ends of the disk. The ionized gas as inferred from the H alpha observations, is largely confined to two large, symmetrically placed emission regions near the ends of the disk. Finally, the HI and 21-cm radio continuum emission also exhibit this strongly double-peaked structure. At all of the above wavelengths the emission peaks are roughly coincident and lie approx. 1.2 minutes to the NW and approx. 1.1 minutes to the SE of the optical center of this galaxy

    Measures of galaxy dust and gas mass with Herschel photometry and prospects for ALMA

    Full text link
    (Abridged) Combining the deepest Herschel extragalactic surveys (PEP, GOODS-H, HerMES), and Monte Carlo mock catalogs, we explore the robustness of dust mass estimates based on modeling of broad band spectral energy distributions (SEDs) with two popular approaches: Draine & Li (2007, DL07) and a modified black body (MBB). As long as the observed SED extends to at least 160-200 micron in the rest frame, M(dust) can be recovered with a >3 sigma significance and without the occurrence of systematics. An average offset of a factor ~1.5 exists between DL07- and MBB-based dust masses, based on consistent dust properties. At the depth of the deepest Herschel surveys (in the GOODS-S field) it is possible to retrieve dust masses with a S/N>=3 for galaxies on the main sequence of star formation (MS) down to M(stars)~1e10 [M(sun)] up to z~1. At higher redshift (z<=2) the same result is achieved only for objects at the tip of the MS or lying above it. Molecular gas masses, obtained converting M(dust) through the metallicity-dependent gas-to-dust ratio delta(GDR), are consistent with those based on the scaling of depletion time, and on CO spectroscopy. Focusing on CO-detected galaxies at z>1, the delta(GDR) dependence on metallicity is consistent with the local relation. We combine far-IR Herschel data and sub-mm ALMA expected fluxes to study the advantages of a full SED coverage.Comment: Accepted for publication in Astronomy and Astrophysics. Some figures have degraded quality for filesize reason

    Local Swift-BAT active galactic nuclei prefer circumnuclear star formation

    Full text link
    We use Herschel data to analyze the size of the far-infrared 70micron emission for z<0.06 local samples of 277 hosts of Swift-BAT selected active galactic nuclei (AGN), and 515 comparison galaxies that are not detected by BAT. For modest far-infrared luminosities 8.5<log(LFIR)<10.5, we find large scatter of half light radii Re70 for both populations, but a typical Re70 <~ 1 kpc for the BAT hosts that is only half that of comparison galaxies of same far-infrared luminosity. The result mostly reflects a more compact distribution of star formation (and hence gas) in the AGN hosts, but compact AGN heated dust may contribute in some extremely AGN-dominated systems. Our findings are in support of an AGN-host coevolution where accretion onto the central black hole and star formation are fed from the same gas reservoir, with more efficient black hole feeding if that reservoir is more concentrated. The significant scatter in the far-infrared sizes emphasizes that we are mostly probing spatial scales much larger than those of actual accretion, and that rapid accretion variations can smear the distinction between the AGN and comparison categories. Large samples are hence needed to detect structural differences that favour feeding of the black hole. No size difference AGN host vs. comparison galaxies is observed at higher far-infrared luminosities log(LFIR)>10.5 (star formation rates >~ 6 Msun/yr), possibly because these are typically reached in more compact regions in the first place.Comment: 7 pages, 3 figures, accepted for publication in Astronomy & Astrophysic
    • …
    corecore