90 research outputs found

    The azimuthal and radial distributions of HI and H2 in NGC 6946

    Get PDF
    A study was completed of the atomic and molecular components of the ISM in NGC 6946. The distribution of molecular clouds was determined from a fully sampled CO map of the inner disk using the 14-meter telescope of the FCRAO. The distribution of atomic gas was derived from VLA observations at 40" resolution in the D configuration. When comparing the global CO and HI properties with other components of the galaxy, it was found that the azimuthally averaged radial distributions of CO, H-alpha, radio continuum and blue light all exhibit similar roughly exponential falloffs, while the azimuthally averaged HI surface densities vary by only a factor of 2 out to R = 16 kpc. This indicates that while the H-alpha/CO ratio is approximately constant with radius, the CO/HI ratio decreases by a factor of 30 from the center of the galaxy to R = 10 kpc

    High resolution near-infrared imaging of submillimeter galaxies

    Full text link
    We present F110W (~J) and F160W (~H) observations of ten submillimeter galaxies (SMGs) obtained with the Hubble Space Telescope's (HST's) NICMOS camera. Our targets have optical redshifts in the range 2.20<z<2.81 confirmed by millimeter CO or mid-IR spectroscopy, guaranteeing that the two bands sample the rest-frame optical with the Balmer break falling between them. Eight of ten are detected in both bands, while two are detected in F160W only. We study their F160W morphologies, applying a maximum-deblending detection algorithm to distinguish multiple- from single-component configurations, leading to reassessments for several objects. Based on our NICMOS imaging and/or previous dynamical evidence we identify five SMGs as multiple sources, which we interpret as merging systems. Additionally, we calculate morphological parameters asymmetry (A) and Gini coefficient (G); thanks to our sample's limited redshift range we recover the trend that multiple-component, merger-like morphologies are reflected in higher asymmetries. We analyze the stellar populations of nine objects with F110W/F160W photometry, using archival HST optical data when available. For multiple systems, we are able to model the individual components that build up an SMG. With the available data we cannot discriminate among star formation histories, but we constrain stellar masses and mass ratios for merger-like SMG systems, obtaining a mean log(M_*/M_sun)=10.9+/-0.2 for our full sample, with individual values log(M_*/M_sun)~9.6-11.8. The morphologies and mass ratios of the least and most massive systems match the predictions of the major-merger and cold accretion SMG formation scenarios, respectively, suggesting that both channels may have a role in the population's origin.Comment: 41 pages preprint, 3 figures, published in ApJ on 2013 May 1

    The Evolution of the Star-forming Interstellar Medium across Cosmic Time

    Full text link
    Over the past decade increasingly robust estimates of the dense molecular gas content in galaxy populations between redshift 0 and the peak of cosmic galaxy/star formation from redshift 1-3 have become available. This rapid progress has been possible due to the advent of powerful ground-based, and space telescopes for combined study of several millimeter to far-IR, line or continuum tracers of the molecular gas and dust components. The main conclusions of this review are: 1. Star forming galaxies contained much more molecular gas at earlier cosmic epochs than at the present time. 2. The galaxy integrated depletion time scale for converting the gas into stars depends primarily on z or Hubble time, and at a given z, on the vertical location of a galaxy along the star-formation rate versus stellar mass "main-sequence" (MS) correlation. 3. Global rates of galaxy gas accretion primarily control the evolution of the cold molecular gas content and star formation rates of the dominant MS galaxy population, which in turn vary with the cosmological expansion. A second key driver may be global disk fragmentation in high-z, gas rich galaxies, which ties local free-fall time scales to galactic orbital times, and leads to rapid radial matter transport and bulge growth. Third, the low star formation efficiency inside molecular clouds is plausibly set by super-sonic streaming motions, and internal turbulence, which in turn may be driven by conversion of gravitational energy at high-z, and/or by local feedback from massive stars at low-z. 4. A simple 'gas regulator' model is remarkably successful in predicting the combined evolution of molecular gas fractions, star formation rates, galactic winds, and gas phase metallicities.Comment: To be published in Annual Reviews of Astronomy and Astrophysic

    A Compact Starburst Core in the Dusty Lyman Break Galaxy Westphal-MD11

    Full text link
    Using the IRAM Plateau de Bure Interferometer, we have searched for CO(3-2) emission from the dusty Lyman break galaxy Westphal-MD11 at z = 2.98. Our sensitive upper limit is surprisingly low relative to the system's 850 um flux density and implies a far-IR/CO luminosity ratio as elevated as those seen in local ultraluminous mergers. We conclude that the observed dust emission must originate in a compact structure radiating near its blackbody limit and that a relatively modest molecular gas reservoir must be fuelling an intense nuclear starburst (and/or deeply buried active nucleus) that may have been triggered by a major merger. In this regard, Westphal-MD11 contrasts strikingly with the lensed Lyman break galaxy MS1512-cB58, which is being observed apparently midway through an extended episode of more quiescent disk star formation.Comment: 5 pages, 1 figure (emulateapj), accepted by ApJ

    COLD GASS, an IRAM Legacy Survey of Molecular Gas in Massive Galaxies: III. Comparison with semi-analytic models of galaxy formation

    Full text link
    We compare the semi-analytic models of galaxy formation of Fu et al. (2010), which track the evolution of the radial profiles of atomic and molecular gas in galaxies, with gas fraction scaling relations derived from the COLD GASS survey (Saintonge et al 2011). The models provide a good description of how condensed baryons in galaxies with gas are partitioned into stars, atomic and molecular gas as a function of galaxy stellar mass and surface density. The models do not reproduce the tight observed relation between stellar surface density and bulge-to-disk ratio for this population. We then turn to an analysis of the"quenched" population of galaxies without detectable cold gas. The current implementation of radio-mode feedback in the models disagrees strongly with the data. In the models, gas cooling shuts down in nearly all galaxies in dark matter halos above a mass of 10**12 M_sun. As a result, stellar mass is the observable that best predicts whether a galaxy has little or no neutral gas. In contrast, our data show that quenching is largely independent of stellar mass. Instead, there are clear thresholds in bulge-to-disk ratio and in stellar surface density that demarcate the location of quenched galaxies. We propose that processes associated with bulge formation play a key role in depleting the neutral gas in galaxies and that further gas accretion is suppressed following the formation of the bulge, even in dark matter halos of low mass.Comment: 12 figures, accepted for publication in MNRAS, the COLD GASS data is available at http://www.mpa-garching.mpg.de/COLD_GASS/data.shtm

    Physical Properties of Molecular Clouds at 2 parsec Resolution in the Low-Metallicity Dwarf Galaxy NGC 6822 and the Milky Way

    Get PDF
    We present the ALMA survey of CO(2-1) emission from the 1/5 solar metallicity, Local Group dwarf galaxy NGC 6822. We achieve high (0.9 arcsec ~ 2 pc) spatial resolution while covering large area: four 250 pc x 250 pc regions that encompass ~2/3 of NGC 6822's star formation. In these regions, we resolve ~150 compact CO clumps that have small radii (~2-3 pc), narrow line width (~1 km/s), and low filling factor across the galaxy. This is consistent with other recent studies of low metallicity galaxies, but here shown with a 15 times larger sample. At parsec scales, CO emission correlates with 8 micron emission better than with 24 micron emission and anti-correlates with Halpha, so that PAH emission may be an effective tracer of molecular gas at low metallicity. The properties of the CO clumps resemble those of similar-size structures in Galactic clouds except of slightly lower surface brightness and CO-to-H2 ratio ~1-2 times the Galactic value. The clumps exist inside larger atomic-molecular complexes with masses typical for giant molecular cloud. Using dust to trace H2 for the entire complex, we find CO-to-H2 to be ~20-25 times the Galactic value, but with strong dependence on spatial scale and variations between complexes that may track their evolutionary state. The H2-to-HI ratio is low globally and only mildly above unity within the complexes. The SFR-to-H2 ratio is ~3-5 times higher in the complexes than in massive disk galaxies, but after accounting for the bias from targeting star-forming regions, we conclude that the global molecular gas depletion time may be as long as in massive disk galaxies.Comment: Accepted for publication in The Astrophysical Journal; 22 pages, 10 figures, 7 table

    Studying the Dynamics of Star Forming and IR Luminous Galaxies with Infrared Spectroscopy

    Full text link
    With the advent of efficient near-IR spectrometers on 10m-class telescopes, exploiting the new generation of low readout noise, large format detectors, OH avoidance and sub-arcsecond seeing, 1-2.4 micron spectroscopy is becoming a key means of obtaining detailed galaxy dynamics and for studies of high-z galaxies. In the following we present the results of three recent IR spectroscopy studies on the dynamics of ULIRG mergers, super star clusters in the Antennae, and on the properties of the rotation curves of z~1 disk galaxies, carried out with ISAAC on the VLT and NIRSPEC on the Keck.Comment: To appear in the Proceedings of the ESO Workshop "The Mass of Galaxies at Low and High Redshift", R. Bender and A. Renzini Eds. (Springer-Verlag

    Spitzer Mid-Infrared Spectroscopy of Infrared Luminous Galaxies at z~2 III: Far-IR to Radio Properties and Optical Spectral Diagnostics

    Get PDF
    We present the far-IR, millimeter, and radio photometry as well as optical and near-IR spectroscopy of a sample of 48 z~1-3 Spitzer-selected ULIRGs with IRS mid-IR spectra. Our goals are to compute their bolometric emission, and to determine both the presence and relative strength of their AGN and starburst components. We find that strong-PAH sources tend to have higher 160um and 1.2mm fluxes than weak-PAH sources. The depth of the 9.7um silicate feature does not affect MAMBO detectability. We fit the far-IR SEDs of our sample and find an average ~7x10^{12}Lsun for our z>1.5 sources. Spectral decomposition suggests that strong-PAH sources typically have ~20-30% AGN fractions. Weak-PAH sources by contrast tend to have >~70% AGN fractions, with a few sources having comparable contributions of AGN and starbursts. The optical line diagnostics support the presence of AGN in the bulk of the weak-PAH sources. With one exception, our sources are narrow-line sources, show no obvious correspondence between the optical extinction and the silicate feature depth, and, in two cases, show evidence for outflows. Radio AGN are present in both strong-PAH and weak-PAH sources. This is supported by our sample's far-IR-to-radio ratios (q) being consistently below the average value of 2.34 for local star-forming galaxies. We use survival analysis to include the lower-limits given by the radio-undetected sources, arriving at =2.07+/-0.01 for our z>1.5 sample. In total, radio and, where available, optical line diagnostics support the presence of AGN in 57% of the z>1.5 sources, independent of IR-based diagnostics. For higher-z sources, the AGN luminosities alone are estimated to be >10^{12}Lsun, which, supported by the [OIII] luminosities, implies that the bulk of our sources host obscured quasars.Comment: 22 pages, 14 figures, accepted for publication in Ap

    On the Relation Between Black Hole Mass and Velocity Dispersion in Type 1 and Type 2 AGN

    Get PDF
    We present results from infrared spectroscopic projects that aim to test the relation between the mass of a black hole M_(BH) and the velocity dispersion of the stars in its host-galaxy bulge. We demonstrate that near-infrared, high-resolution spectroscopy assisted by adaptive optics is key in populating the high-luminosity end of the relation. We show that the velocity dispersions of mid-infrared, high-ionization lines originating from gas in the narrow-line region of the active galactic nucleus follow the same relation. This result provides a way of inferring MBH estimates for the cosmologically significant population of obscured, type 2 AGN that can be applicable to data from spectrographs on next-generation infrared telescopes
    corecore