120 research outputs found

    Does T Helper Differentiation Correlate with Resistance or Susceptibility to Infection with L. major? Some Insights From the Murine Model

    Get PDF
    The murine model of Leishmania major infection has been an invaluable tool in understanding T helper differentiation in vivo. The initial evidence for a role of distinct CD4+ T helper subsets in the outcome of infection was first obtained with this experimental model. The development of CD4+ Th1 cells was associated with resolution of the lesion, control of parasite replication, and resistance to re-infection in most of the mouse strains investigated (i.e., C57BL/6). In contrast, differentiation of CD4+ Th2 cells correlated with the development of unhealing lesions, and failure to control parasite load in a few strains (i.e., BALB/c). Since these first reports, an incredible amount of effort has been devoted to understanding the various parameters involved in the differentiation of these, and more recently discovered T helper subsets such as Th17 and T regulatory cells. The discovery of cross-talk between T helper subsets, as well as their plasticity force us to reevaluate the events driving a protective/deleterious T helper immune response following infection with L. major in mice. In this review, we describe the individual contributions of each of these CD4+ T helper subsets following L. major inoculation, emphasizing recent advances in the field, such as the impact of different substrains of L. major on the pathogenesis of disease

    The Prominent Role of Neutrophils during the Initial Phase of Infection by Leishmania Parasites

    Get PDF
    Neutrophils are rapidly and massively recruited to the site of Leishmania inoculation, where they phagocytose the parasites, some of which are able to survive within these first host cells. Neutrophils can thus provide a transient safe shelter for the parasites, prior to their entry into macrophages where they will replicate. In addition, neutrophils release and synthesize rapidly several factors including cytokines and chemokines. The mechanism involved in their rapid recruitment to the site of parasite inoculation, as well as the putative consequences of their massive presence on the microenvironment of the focus of infection will be discussed in the context of the development of the Leishmania-specific immune response

    Inactivation of Eα and Eβ expression in inbred and wild mice by multiple distinct mutations, some of which predate speciation within Mus species

    Get PDF
    The H-2 MHC of mice encodes two functional class II heterodimeric proteins: AαAβ (A) and EαEβ (E). While failure to express the A protein has not been reported, a significant proportion of of H-2 haplotypes In both Inbred and wild mice do not express E proteins. We and others have previously characterized the molecular basis for defective E expression in haplotypes from Mus domestlcus (b, f, q, s, from inbred strains) and Af. castaneus (w17, wild-derived) species, identifying six distinct defects in the genes for Eα or Eβ. In this report we have extended these studies to other E- haplotypes, Including several from f-haplotype-bearlng M. domesticus mice (w29, w57, w302) and one derived from the Asian species M. bactrianus (w301). Analyses at the protein, RNA and DNA levels were employed to Identify the defects in the genes for Ea and Eb. At least one new defect was identified that prevents Eβ expression in a t-associated H-2 haplotypes (w57), bringing the number of distinct mutations causing the Eβ phenotype to seven. Another t-associated haplotype, w302, was found to share the same Eβ defect with mice of the inbred q haplotype and of the w17 haplotype from Af. castaneus, while its Ea gene contains the deletion carried also by the Inbred b and s haplotypes and by a number of wild haplotypes. The mutations in the Ea and Eb genes of the w301 haplotype from M. bactrianus were found to be Identical to those of the Inbred f haplotype. This indicates that the origin of the mutations in the Eb genes of the q, w17 and w302 haplotypes and in the Ea and Eb genes of the f and w301 haplotypes, predated speciation within Mus, thought to have occurred ∼0.35-1 million years ago. Their maintenance in mouse populations suggests that in certain conditions the failure to express EαEβ proteins may be advantageous and selected fo

    Exposure of monocytes to heat shock does not increase class II expression but modulates antigen-dependent T cell responses

    Get PDF
    Expression of heat shock (HS) proteins (HSP) increases after exposure to elevated temperatures or other types of injury, such as oxldative injury. Because of their function as ‘molecular chaperones', HSP are suggested to participate in antigen processing and presentation. We have previously reported that HS modulates antigen presentation in a human EBV-transformed B cell line. Here we investigated the effects of HS on MHC class II expression and on antigen processing and presentation by human monocytes. Monocytes were isolated from peripheral blood of normal human volunteers, purified by adherence, then exposed to temperatures ranging from 37 to 45°C for 20 min, allowed to recover for 2 h at 37°C and used for immunofluorescence or as antigen presenting cells in autologous and heterologous lymphocyte proliferation assays. No increase in class II expression was detected as assessed by flow cytometry. Monocytes (3 × 104) and lymphocytes (1 × 105) were co-cultured for 5 days in the presence of several antigens [diphtheria toxold, tetanus toxold or purified peptlde derivative (PPD)] and labeled with 1 μCI [3H]thymldlne for 16 h. Pre-exposure to HS (44°C) significantly (P < 0.001) increased T cell responses to diphtheria toxold, whereas the effect on the responses to other antigens (tetanus toxold or PPD) were not significant. HS did not increase heterologous T cell responses nor T cell proliferation induced by the non-processed superantigens such as staphylococcal enterotoxln B. The effect of HS was inhibited by actlnomycln B and thus appeared dependent upon HSP synthesis. HSP-mediated increases in antigen processing may potentiate the ongoing immune response at inflammatory site

    Selective Expression of the Vβ14 T Cell Receptor on Leishmania guyanensis-Specific CD8+ T Cells during Human Infection

    Get PDF
    Peripheral blood mononuclear cells from subjects never exposed to Leishmania were stimulated with Leishmania guyanensis. We demonstrated that L. guyanensis-stimulated CD8+ T cells produced interferon (IFN)-γ and preferentially expressed the Vb14 T cell receptor (TCR) gene family. In addition, these cells expressed cutaneous lymphocyte antigen and CCR4 surface molecules, suggesting that they could migrate to the skin. Results obtained from the lesions of patients with localized cutaneous leishmaniaisis (LCL) showed that Vβ14 TCR expression was increased in most lesions (63.5%) and that expression of only a small number of Vb gene families (Vβ1, Vβ6, Vβ9, Vβ14, and Vβ24) was increased. The presence of Vβ14 T cells in tissue confirmed the migration of these cells to the lesion site. Thus, we propose the following sequence of events during infection with L. guyanensis. After initial exposure to L. guyanensis, CD8+ T cells preferentially expressing the Vb14 TCR and secreting IFN-γ develop and circulate in the periphery. During the infection, these cells migrate to the skin at the site of the parasitic infection. The role of these Vβ14 CD8+ T cells in resistance to infection remains to be determined conclusivel

    Neutrophil-Derived CCL3 Is Essential for the Rapid Recruitment of Dendritic Cells to the Site of Leishmania major Inoculation in Resistant Mice

    Get PDF
    Neutrophils are rapidly and massively recruited to sites of microbial infection, where they can influence the recruitment of dendritic cells. Here, we have analyzed the role of neutrophil released chemokines in the early recruitment of dendritic cells (DCs) in an experimental model of Leishmania major infection. We show in vitro, as well as during infection, that the parasite induced the expression of CCL3 selectively in neutrophils from L. major resistant mice. Neutrophil-secreted CCL3 was critical in chemotaxis of immature DCs, an effect lost upon CCL3 neutralisation. Depletion of neutrophils prior to infection, as well as pharmacological or genetic inhibition of CCL3, resulted in a significant decrease in DC recruitment at the site of parasite inoculation. Decreased DC recruitment in CCL3−/− mice was corrected by the transfer of wild type neutrophils at the time of infection. The early release of CCL3 by neutrophils was further shown to have a transient impact on the development of a protective immune response. Altogether, we identified a novel role for neutrophil-secreted CCL3 in the first wave of DC recruitment to the site of infection with L. major, suggesting that the selective release of neutrophil-secreted chemokines may regulate the development of immune response to pathogens

    In Leishmaniasis due to Leishmania guyanensis infection, distinct intralesional interleukin-10 and foxp3 mRNA expression are associated with unresponsiveness to treatment

    Get PDF
    The presence of intralesional natural regulatory T cells, characterized by the expression of Foxp3 mRNA, was analyzed in patients with localized leishmaniasis due to Leishmania guyanensis infection that was unresponsive to treatment with pentamidine isethionate. Foxp3 mRNA levels were associated with unresponsiveness to treatment among patients with a lesion duration of ⩾1 month, but this association was not observed among patients with a lesion duration of <1 month. In conclusion, high intralesional expression of Foxp3 might be an indicator of poor response to treatment, depending on the duration of lesion

    Notch regulates Th17 differentiation and controls trafficking of IL-17 and metabolic regulators within Th17 cells in a context-dependent manner

    Get PDF
    Th17 cells play critical roles in host defense and autoimmunity. Emerging data support a role for Notch signaling in Th17 cell differentiation but whether it is a positive or negative regulator remains unclear. We report here that T cell-specific deletion of Notch receptors enhances Th17 cell differentiation in the gut, with a corresponding increase in IL-17 secretion. An increase in Th17 cell frequency was similarly observed following immunization of T cell specific Notch mutant mice with OVA/CFA. However, in this setting, Th17 cytokine secretion was impaired, and increased intracellular retention of IL-17 was observed. Intracellular IL-17 co-localized with the CD71 iron transporter in the draining lymph node of both control and Notch-deficient Th17 cells. Immunization induced CD71 surface expression in control, but not in Notch-deficient Th17 cells, revealing defective CD71 intracellular transport in absence of Notch signaling. Moreover, Notch receptor deficient Th17 cells had impaired mTORC2 activity. These data reveal a context-dependent impact of Notch on vesicular transport during high metabolic demand suggesting a role for Notch signaling in the bridging of T cell metabolic demands and effector functions. Collectively, our findings indicate a prominent regulatory role for Notch signaling in the fine-tuning of Th17 cell differentiation and effector function

    Resistance of Leishmania (Viannia) Panamensis to Meglumine Antimoniate or Miltefosine Modulates Neutrophil Effector Functions

    Get PDF
    Leishmania (Viannia) panamensis (L. (V.) p.) is the main causative agent of cutaneous leishmaniasis in Colombia and is usually treated with either meglumine antimoniate (MA) or miltefosine (MIL). In recent years, there has been increasing evidence of the emergence of drug-resistance against these compounds. Neutrophils are known to play an important role in immunity against Leishmania. These cells are rapidly recruited upon infection and are also present in chronic lesions. However, their involvement in the outcome of infection with drug-resistant Leishmania has not been examined. In this study, human and murine neutrophils were infected in vitro with MA or MIL drug-resistant L. (V.) p. lines derived from a parental L. (V.) p. drug-susceptible strain. Neutrophil effector functions were assessed analyzing the production of reactive oxygen species (ROS), the formation of neutrophil extracellular trap (NET) and the expression of cell surface activation markers. Parasite killing by neutrophils was assessed using L. (V.) p. transfected with a luciferase reporter. We show here that MA and MIL-resistant L. (V.) p. lines elicited significantly increased NET formation and MA-resistant L. (V.) p. induced significantly increased ROS production in both murine and human neutrophils, compared to infections with the parental MIL and MA susceptible strain. Furthermore, neutrophils exposed to drug-resistant lines showed increased activation, as revealed by decreased expression of CD62L and increased expression of CD66b in human neutrophils yet presented higher survival within neutrophils than the drug-susceptible strain. These results provide evidence that parasite drug-susceptibility may influences neutrophil activation and function as well as parasite survival within neutrophils. Further investigaton of the inter-relationship of drug susceptibility and neutrophil effector function should contribute to better understanding of the factors involved in susceptibility to anti-Leishmania drugs

    TLR2 signaling in skin non-hematopoietic cells induces early neutrophil recruitment in response to Leishmania major infection

    Get PDF
    Neutrophils are rapidly recruited to the mammalian skin in response to infection with the cutaneous Leishmania pathogen. The parasites use neutrophils to establish the disease, however, the signals driving early neutrophil recruitment are poorly known. Here, we identified the functional importance of TLR2 signaling in this process. Using bone-marrow chimeras and immunohistology we identified the TLR2-expressing cells involved in this early neutrophil recruitment to be of non-hematopoietic origin. Keratinocytes are damaged and briefly in contact with the parasites during infection. We show that TLR2 triggering by L. major is required for their secretion of neutrophil-attracting chemokines. Furthermore, TLR2 triggering by L. major phosphoglycans is critical for neutrophil recruitment impacting negatively on disease development, as shown by better control of lesion size and parasite load in Tlr2-/- compared to wild type infected mice. Conversely, restoring early neutrophil presence in Tlr2-/- mice through injection of wild type neutrophils or CXCL1 at the onset of infection resulted in delayed disease resolution comparable to that observed in wild type mice. Taken together, our data demonstrate a new role for TLR2-expressing non-hematopoietic skin cells in the recruitment of the first wave of neutrophils following L. major infection, a process delaying disease control
    corecore