61 research outputs found

    Formation and Surface Behavior of Pt and Pd Complexes with Ligand Systems Derived from Nitrile‐functionalized Ionic Liquids Studied by XPS

    Get PDF
    Abstract We studied the formation and surface behavior of Pt(II) and Pd(II) complexes with ligand systems derived from two nitrile‐functionalized ionic liquids (ILs) in solution using angle‐resolved X‐ray photoelectron spectroscopy (ARXPS). These ligand systems enabled a high solubility of the metal complexes in IL solution. The complexes were prepared by simple ligand substitution under vacuum conditions in defined excess of the coordinating ILs, [C3CNC1Im][Tf2N] and [C1CNC1Pip][Tf2N], to immediately yield solutions of the final products. The ILs differ in the cationic head group and the chain length of the functionalized substituent. Our XPS measurements on the neat ILs gave insights in the electronic properties of the coordinating substituents revealing differences in donation capability and stability of the complexes. Investigations on the composition of the outermost surface layers using ARXPS revealed no surface affinity of the nitrile‐functionalized chains in the neat ILs. Solutions of the formed complexes in the nitrile ILs showed homogeneous distribution of the solute at the surface with the heterocyclic moieties preferentially orientated towards the vacuum, while the metal centers are rather located further away from the IL/vacuum interface

    Structure Formation in an Ionic Liquid Wetting Layer: A Combined STM, IRAS, DFT and MD Study of [C2C1Im][OTf] on Au(111)

    Get PDF
    In a solid catalyst with ionic liquid layer (SCILL), ionic liquid (IL) coatings are used to improve the selectivity of noble metal catalysts. To understand the origins of this selectivity control, we performed model studies by surface science methods in ultrahigh vacuum (UHV). We investigated the growth and thermal stability of ultrathin IL films by infrared reflection absorption spectroscopy (IRAS). We combined these experiments with scanning tunneling microscopy (STM) to obtain information on the orientation of the ions, the interactions with the surface, the intermolecular interactions, and the structure formation. Additionally, we performed DFT calculations and molecular dynamics (MD) simulations to interpret the experimental data. We studied the IL 1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate [C2C1Im][OTf] on Au(111) surfaces. We observe a weakly bound multilayer of [C2C1Im][OTf], which is stable up to 390 K, while the monolayer desorbs at ∼450 K. [C2C1Im][OTf] preferentially adsorbs at the step edges and elbows of the herringbone reconstruction of Au(111). The anion adsorbs via the SO3 group with the molecular axis perpendicular to the surface. At low coverage, the [C2C1Im][OTf] crystallizes in a glass‐like 2D phase with short‐range order. At higher coverage, we observe a phase transition to a 6‐membered ring structure with long‐range order.Ionic liquid (IL) coatings are used in a solid catalyst with ionic liquid layer (SCILL) to improve the selectivity of noble metal catalysts. To understand the origins of this selectivity control, we performed model studies by surface science methods in ultra‐high vacuum (UHV). image Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Bavarian Ministry of Economic Affair

    Selektivitätskontrolle in elektrokatalytischen Oxidationsreaktionen durch Ionische Flüssigkeiten

    Get PDF
    Der so genannte SCILL-Katalysator (englisch: solid catalyst with ionic liquid layer) beschreibt ein neues, äußerst erfolgreiches Konzept im Bereich der heterogenen Katalyse. Hierbei besteht die Grundidee darin, die Selektivität eines Katalysators durch die Beladung mit ionischen Flüssigkeiten drastisch zu erhöhen. In dieser Arbeit zeigen wir, dass das Konzept auf die Elektrokatalyse übertragbar ist und zur selektiven Umsetzung von organischen Verbindungen genutzt werden kann. Bei der hier untersuchten Elektrooxidation von 2,3-Butandiol können zwei Produkte entstehen. Das einfach oxidierte Acetoin und das zweifach oxidierte Diacetyl. Durch die Zugabe einer ionischen Flüssigkeit (1-Ethyl-3-methyl-imidazolium-trifluormethansulfonat, [C2C1Im][OTf]) kann die Selektivität des Katalysators zu Gunsten der Acetoinbildung drastisch erhöht werden. Der zugrundeliegende Mechanismus wurde dabei spektroskopisch in situ untersucht: Die Adsorption des Anions der ionischen Flüssigkeit verhindert die Wasseraktivierung. Dies unterbindet den zweiten Oxidationsschritt vom Acetoin zum Diacetyl und erhöht damit die Selektivität. Unsere Studie zeigt das große Potential elektrochemischer SCILL-Katalysatoren für die selektive Umsetzung von organischen Verbindungen
    corecore