5 research outputs found

    Enzymatic oxidation of oleuropein and 3-hydroxytyrosol by laccase, peroxidase and tyrosinase.

    Get PDF
    The oxidation of oleuropein and 3‐hydroxytyrosol by oxidases laccase, tyrosinase, and peroxidase has been studied. The use of a spectrophotometric method and another spectrophotometric chronometric method has made it possible to determine the kinetic parameters Vmax and KM for each enzyme. The highest binding affinity was shown by laccase. The antioxidant capacities of these two molecules have been characterized, finding a very similar primary antioxidant capacity between them. Docking studies revealed the optimal binding position, which was the same for the two molecules and was a catalytically active position. Practical applications: One of the biggest environmental problems in the food industry comes from olive oil mill wastewater with a quantity of approximately 30 million tons per year worldwide. In addition, olive pomace, the solid residue obtained from the olive oil production, is rich in hydroxytyrosol and oleuropein and the action of enzymatic oxidases can give rise to products in their reactions that can lead to polymerization. This polymerization can have beneficial effects because it can increase the antioxidant capacity with potential application on new functional foods or as feed ingredients. Tyrosinase, peroxidase, and laccase are the enzymes degrading these important polyphenols. The application of a spectrophotometric method for laccase and a chronometric method, for tyrosinase and peroxidase, allowed us to obtain the kinetic information of their reactions on hydroxytyrosol and oleuropein. The kinetic information obtained could advance in the understanding of the mechanism of these important industrial enzymes

    Kinetic characterization of the oxidation of catecolamines and related compounds by laccase

    Get PDF
    The pathways of melanization and sclerotization of the cuticle in insects are carried out by the action of laccases on dopamine and related compounds. In this work, the laccase action of Trametes versicolor (TvL) on catecholamines and related compounds has been kinetically characterized. Among them, dopamine, L-dopa, L-epinephrine, L-norepinephrine, DL-isoprenaline, L-isoprenaline, DL-α-methyldopa, L-α-methyldopa and L-dopa methylester. A chronometric method has been used, which is based on measuring the lag period necessary to consume a small amount of ascorbic acid, added to the reaction medium. The use of TvL has allowed docking studies of these molecules to be carried out at the active site of this enzyme. The hydrogen bridge interaction between the hydroxyl oxygen at C-4 with His-458, and with the acid group of Asp-206, would make it possible to transfer the electron to the T1 Cu-(II) copper centre of the enzyme. Furthermore, Phe-265 would facilitate the adaptation of the substrate to the enzyme through Π-Π interactions. To kinetically characterize these compounds, we need to take into consideration that, excluding L-dopa, L-α-methyldopa and DL-α-methyldopa, all compounds are in hydrochloride form. Because of this, first we need to kinetically characterize the inhibition by chloride and, after that, calculate the kinetic parameters K M and V max S. From the kinetic data obtained, it appears that the best substrate is dopamine. The presence of an isopropyl group bound to nitrogen (isoprenaline) makes it especially difficult to catalyse. The formation of the ester (L-dopa methyl ester) practically does not affect catalysis. The addition of a methyl group (α-methyl dopa) increases the rate but decreases the affinity for catalysis. L-Epinephrine and L-norepinephrine have an affinity similar to isoprenaline, but faster catalysis, probably due to the greater nucleophilic power of their phenolic hydroxyl

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore