27 research outputs found

    Epigenetic programming of pediatric high-grade glioma: Pushing beyond proof of concept to clinical benefit

    Get PDF
    Pediatric high-grade gliomas (pHGG) are a molecularly diverse group of malignancies, each incredibly aggressive and in dire need of treatment advancements. Genomic analysis has revolutionized our understanding of these tumors, identifying biologically relevant subgroups with differing canonical mutational profiles that vary based on tumor location and age. In particular, the discovery of recurrent histone H3 mutations (H3K27M in diffuse midline glioma, H3G34R/V in hemispheric pediatric high-grade gliomas) as unique “oncohistone” drivers revealed epigenetic dysregulation as a hallmark of pediatric high-grade gliomas oncogenesis. While reversing this signature through epigenetic programming has proven effective in several pre-clinical survival models, early results from pediatric high-grade gliomas clinical trials suggest that epigenetic modifier monotherapy will likely not provide long-term disease control. In this review we summarize the genetic, epigenetic, and cellular heterogeneity of pediatric high-grade gliomas, and highlight potential paths forward for epigenetic programming in this devastating disease

    The effect of ω-fatty acids on mrna expression level of PPARγ in patients with gastric adenocarcinoma

    Get PDF
    Background: The antineoplastic role of peroxisome proliferator-activated receptor gamma (PPARγ) ligandshas previously been demonstrated in several gastric cancer cell lines. Activation of PPARγ by polyunsaturated fatty acids (PUFAs) inhibits growth and proliferationof tumor cells. In this double-blind clinical study, we evaluate the effect of PUFAs on PPARγ mRNA expression in patients with gastric adenocarcinoma. Materials and Methods: A total of 34 chemotherapy-naive patients diagnosed with gastric adenocarcinoma were enrolled in the present study. According to treatment strategies, all subjects were divided into two groups, the first group (17 individuals) received cisplatin without supplements and the second group (17 individuals) received cisplatin plus orally administered PUFAs supplements for 3 weeks. The gastric biopsy samples were obtained from all participants before and after treatment, and PPARγ mRNA expression levels were evaluated by quantitative real-time polymerase chain reaction using validated reference genes. Results: Our findings revealed that PPARγ mRNA expression is significantly upregulated in group II afterreceiving cisplatin plus orally administered PUFAs supplements for three weeks (p < 0.0001), whereas PPARγ mRNA expression did not show significant alteration in group I after receiving cisplatin alone. Conclusion: The results of the study evidence that PPARγ may act as a potential target for the therapy of human gastric adenocarcinoma
    corecore