6,829 research outputs found
Fast and robust curve skeletonization for real-world elongated objects
We consider the problem of extracting curve skeletons of three-dimensional,
elongated objects given a noisy surface, which has applications in agricultural
contexts such as extracting the branching structure of plants. We describe an
efficient and robust method based on breadth-first search that can determine
curve skeletons in these contexts. Our approach is capable of automatically
detecting junction points as well as spurious segments and loops. All of that
is accomplished with only one user-adjustable parameter. The run time of our
method ranges from hundreds of milliseconds to less than four seconds on large,
challenging datasets, which makes it appropriate for situations where real-time
decision making is needed. Experiments on synthetic models as well as on data
from real world objects, some of which were collected in challenging field
conditions, show that our approach compares favorably to classical thinning
algorithms as well as to recent contributions to the field.Comment: 47 pages; IEEE WACV 2018, main paper and supplementary materia
Calibration of Asynchronous Camera Networks: CALICO
Camera network and multi-camera calibration for external parameters is a
necessary step for a variety of contexts in computer vision and robotics,
ranging from three-dimensional reconstruction to human activity tracking. This
paper describes CALICO, a method for camera network and/or multi-camera
calibration suitable for challenging contexts: the cameras may not share a
common field of view and the network may be asynchronous. The calibration
object required is one or more rigidly attached planar calibration patterns,
which are distinguishable from one another, such as aruco or charuco patterns.
We formulate the camera network and/or multi-camera calibration problem using
rigidity constraints, represented as a system of equations, and an approximate
solution is found through a two-step process. Simulated and real experiments,
including an asynchronous camera network, multicamera system, and rotating
imaging system, demonstrate the method in a variety of settings. Median
reconstruction accuracy error was less than mm for all datasets.
This method is suitable for novice users to calibrate a camera network, and the
modularity of the calibration object also allows for disassembly, shipping, and
the use of this method in a variety of large and small spaces.Comment: 11 page
Multispecies Fruit Flower Detection Using a Refined Semantic Segmentation Network
In fruit production, critical crop management decisions are guided by bloom intensity, i.e., the number of flowers present in an orchard. Despite its importance, bloom intensity is still typically estimated by means of human visual inspection. Existing automated computer vision systems for flower identification are based on hand-engineered techniques that work only under specific conditions and with limited performance. This letter proposes an automated technique for flower identification that is robust to uncontrolled environments and applicable to different flower species. Our method relies on an end-to-end residual convolutional neural network (CNN) that represents the state-of-the-art in semantic segmentation. To enhance its sensitivity to flowers, we fine-tune this network using a single dataset of apple flower images. Since CNNs tend to produce coarse segmentations, we employ a refinement method to better distinguish between individual flower instances. Without any preprocessing or dataset-specific training, experimental results on images of apple, peach, and pear flowers, acquired under different conditions demonstrate the robustness and broad applicability of our method
Segmenting root systems in X-ray computed tomography images using level sets
The segmentation of plant roots from soil and other growing media in X-ray
computed tomography images is needed to effectively study the root system
architecture without excavation. However, segmentation is a challenging problem
in this context because the root and non-root regions share similar features.
In this paper, we describe a method based on level sets and specifically
adapted for this segmentation problem. In particular, we deal with the issues
of using a level sets approach on large image volumes for root segmentation,
and track active regions of the front using an occupancy grid. This method
allows for straightforward modifications to a narrow-band algorithm such that
excessive forward and backward movements of the front can be avoided, distance
map computations in a narrow band context can be done in linear time through
modification of Meijster et al.'s distance transform algorithm, and regions of
the image volume are iteratively used to estimate distributions for root versus
non-root classes. Results are shown of three plant species of different
maturity levels, grown in three different media. Our method compares favorably
to a state-of-the-art method for root segmentation in X-ray CT image volumes.Comment: 11 page
Detecting Invasive Insects with Unmanned Aerial Vehicles
A key aspect to controlling and reducing the effects invasive insect species
have on agriculture is to obtain knowledge about the migration patterns of
these species. Current state-of-the-art methods of studying these migration
patterns involve a mark-release-recapture technique, in which insects are
released after being marked and researchers attempt to recapture them later.
However, this approach involves a human researcher manually searching for these
insects in large fields and results in very low recapture rates. In this paper,
we propose an automated system for detecting released insects using an unmanned
aerial vehicle. This system utilizes ultraviolet lighting technology, digital
cameras, and lightweight computer vision algorithms to more quickly and
accurately detect insects compared to the current state of the art. The
efficiency and accuracy that this system provides will allow for a more
comprehensive understanding of invasive insect species migration patterns. Our
experimental results demonstrate that our system can detect real target insects
in field conditions with high precision and recall rates.Comment: IEEE ICRA 2019. 7 page
Lender Preference Clauses and the Destruction of Appealability and Finality: Resolving a Chapter 11 Dilemma
- …
