6 research outputs found

    Non-reciprocal interactions spatially propagate fluctuations in a 2D Ising model

    Full text link
    Motivated by the anisotropic interactions between fish, we implement spatially anisotropic and therefore non-reciprocal interactions in the 2D Ising model. First, we show that the model with non-reciprocal interactions alters the system critical temperature away from that of the traditional 2D Ising model. Further, local perturbations to the magnetization in this out-of-equilibrium system manifest themselves as traveling waves of spin states along the lattice, also seen in a mean-field model of our system. The speed and directionality of these traveling waves are controllable by the orientation and magnitude of the non-reciprocal interaction kernel as well as the proximity of the system to the critical temperature.Comment: 4 figure

    Cooperation of dual modes of cell motility promotes epithelial stress relaxation to accelerate wound healing

    Get PDF
    Collective cell migration in cohesive units is vital for tissue morphogenesis, wound repair, and immune response. While the fundamental driving forces for collective cell motion stem from contractile and protrusive activities of individual cells, it remains unknown how their balance is optimized to maintain tissue cohesiveness and the fluidity for motion. Here we present a cell-based computational model for collective cell migration during wound healing that incorporates mechanochemical coupling of cell motion and adhesion kinetics with stochastic transformation of active motility forces. We show that a balance of protrusive motility and actomyosin contractility is optimized for accelerating the rate of wound repair, which is robust to variations in cell and substrate mechanical properties. This balance underlies rapid collective cell motion during wound healing, resulting from a tradeoff between tension mediated collective cell guidance and active stress relaxation in the tissue

    Entropy Production Rate is Maximized in Non-Contractile Actomyosin

    Get PDF
    The actin cytoskeleton is an active semi-flexible polymer network whose non-equilibrium properties coordinate both stable and contractile behaviors to maintain or change cell shape. While myosin motors drive the actin cytoskeleton out-of-equilibrium, the role of myosin-driven active stresses in the accumulation and dissipation of mechanical energy is unclear. To investigate this, we synthesize an actomyosin material in vitro whose active stress content can tune the network from stable to contractile. Each increment in activity determines a characteristic spectrum of actin filament fluctuations which is used to calculate the total mechanical work and the production of entropy in the material. We find that the balance of work and entropy does not increase monotonically and, surprisingly, the entropy production rate is maximized in the non-contractile, stable state. Our study provides evidence that the origins of system entropy production and activity-dependent dissipation arise from disorder in the molecular interactions between actin and myosinComment: 31 pages, 5 figure
    corecore