109 research outputs found

    Infrared Solar Thermal-Shielding Applications Based on Oxide Semiconductor Plasmonics

    Get PDF
    This chapter describes plasmonic responses in In2O3:Sn nanoparticles (ITO NPs) and their assembled ITO NP sheets in the infrared (IR) range. ITO NPs clearly provide resonance peaks related to local surface plasmon resonances (LSPRs) in the near-IR range, which are dependent on electron density in the NPs. In particular, electron-impurity scattering plays an important role in determining carrier-dependent plasmon damping, which is needed for the design of plasmonic materials based on ITO. ITO NPs are mainly dominated by light absorption. However, a high light reflection is observed in the near- and mid-IR range when using assembled NP sheets. This phenomenon is due to the fact that the introduction of surface modifications to the NPs can facilitate the production of electric-field (E-field) coupling between the NPs. The three-dimensional (3D) E-field coupling allows for resonant splitting of plasmon excitations to the quadrupole and dipole modes, thereby obtaining selective high reflections in the IR range. The high reflective performances from the assembled NP sheets were attributed to the plasmon interactions at the internanoparticle gaps. This work provides important insights for harnessing IR optical responses based on plasmonic technology toward the fabrications of IR solar thermal-shielding applications

    Crystal Symmetry and Polarized Luminescence on Nonpolar ZnO

    Get PDF
    We introduce excitonic polarized photoluminescence (PL) of nonpolar ZnO layers and related quantum well (QW) structures in terms of crystal symmetries and lattice distortions. Polarized PL characters are attributed to in-plane anisotropic strains in the host, which are fully demonstrated on A-plane ZnO. Theoretical evaluations propose that in-plane compressive strains induced in ZnO layers play an important role in obtaining highly polarized optical properties. We experimentally achieve polarized PL responses in strain-controlled A-plane ZnO layers. Furthermore, we find interesting relationship between polarization degree of PL and in-plane anisotropic strains. Finally, highly polarized PL at room temperature is obtained by controlling well width in Cd0.06ZnO0.94O/ZnO QWs as a consequence of change in crystal symmetry from C6v to C2v at interfaces between Cd0.06Zn0.94O well and ZnO barrier layers in the QW samples

    Quantum Critical Point of Itinerant Antiferromagnet in the Heavy Fermion Ce(Ru_{1-x}Rh_x)_2Si_2

    Full text link
    A focus of recent experimental and theoretical studies on heavy fermion systems close to antiferromagnetic (AFM) quantum critical points (QCP) is directed toward revealing the nature of the fixed point, i.e., whether it is an itinerant antiferromagnet [spin density wave (SDW)] type or a locally-critical fixed point. The relevance of the local QCP was proposed to explain the E/T-scaling with an anomalous exponent observed for the AFM QCP of CeCu_{5.9}Au_{0.1}. In this work, we have investigated an AFM QCP of another archetypal heavy fermion system Ce(Ru_{1-x}Rh_x)_2Si_2 with x = 0 and 0.03 (sim x_c) using single-crystalline neutron scattering. Accurate measurements of the dynamical susceptibility Im[chi(Q,E)] at the AFM wave vector Q = 0.35 c^* have shown that Im[chi(Q,E)] is well described by a Lorentzian and its energy width Gamma(Q), i.e., the inverse correlation time depends on temperature as Gamma(Q) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in low temperature ranges.This critical exponent 3/2 proves that the QCP is controlled by the SDW QCP in three space dimensions studied by the renormalization group and self-consistent renormalization theories.Comment: 4 pages, 4 figures, LT24 (Aug. 2005, Orlando

    Quantum Critical Point of Itinerant Antiferromagnet in Heavy Fermion

    Full text link
    A quantum critical point (QCP) of the heavy fermion Ce(Ru_{1-x}Rh_x)_2Si_2 (x = 0, 0.03) has been studied by single-crystalline neutron scattering. By accurately measuring the dynamical susceptibility at the antiferromagnetic wave vector k_3 = 0.35 c^*, we have shown that the energy width Gamma(k_3), i.e., inverse correlation time, depends on temperature as Gamma(k_3) = c_1 + c_2 T^{3/2 +- 0.1}, where c_1 and c_2 are x dependent constants, in a low temperature range. This critical exponent 3/2 +- 0.1 proves that the QCP is controlled by that of the itinerant antiferromagnet.Comment: 4 pages, 3 figure

    Therapeutic potential of clinical-grade human induced pluripotent stem cell-derived cardiac tissues

    Get PDF
    Objectives: To establish a protocol to prepare and transplant clinical-grade human induced pluripotent stem cell (hiPSC)-derived cardiac tissues (HiCTs) and to evaluate the therapeutic potential in an animal myocardial infarction (MI) model. Methods: We simultaneously differentiated clinical-grade hiPSCs into cardiovascular cell lineages with or without the administration of canonical Wnt inhibitors, generated 5- layer cell sheets with insertion of gelatin hydrogel microspheres (GHMs) (HiCTs), and transplanted them onto an athymic rat MI model. Cardiac function was evaluated by echocardiography and cardiac magnetic resonance imaging and compared with that in animals with sham and transplantation of 5-layer cell sheets without GHMs. Graft survival, ventricular remodeling, and neovascularization were evaluated histopathologically. Results: The administration of Wnt inhibitors significantly promoted cardiomyocyte (CM) (P < .0001) and vascular endothelial cell (EC) (P = .006) induction, which resulted in cellular components of 52.0 ± 6.1% CMs and 9.9 ± 3.0% ECs. Functional analyses revealed the significantly lowest left ventricular end-diastolic volume and highest ejection fraction in the HiCT group. Histopathologic evaluation revealed that the HiCT group had a significantly larger median engrafted area (4 weeks, GHM(-) vs HiCT: 0.4 [range, 0.2-0.7] mm² vs 2.2 [range, 1.8-3.1] mm²; P = .005; 12 weeks, 0 [range, 0-0.2] mm² vs 1.9 [range, 0.1-3.2] mm2; P = .026), accompanied by the smallest scar area and highest vascular density at the MI border zone. Conclusions: Transplantation of HiCTs generated from clinical-grade hiPSCs exhibited a prominent therapeutic potential in a rat MI model and may provide a promising therapeutic strategy in cardiac regenerative medicine

    Asbestos-Induced Cellular and Molecular Alteration of Immunocompetent Cells and Their Relationship with Chronic Inflammation and Carcinogenesis

    Get PDF
    Asbestos causes lung fibrosis known as asbestosis as well as cancers such as malignant mesothelioma and lung cancer. Asbestos is a mineral silicate containing iron, magnesium, and calcium with a core of SiO2. The immunological effect of silica, SiO2, involves the dysregulation of autoimmunity because of the complications of autoimmune diseases found in silicosis. Asbestos can therefore cause alteration of immunocompetent cells to result in a decline of tumor immunity. Additionally, due to its physical characteristics, asbestos fibers remain in the lung, regional lymph nodes, and the pleural cavity, particularly at the opening sites of lymphatic vessels. Asbestos can induce chronic inflammation in these areas due to the production of reactive oxygen/nitrogen species. As a consequence, immunocompetent cells can have their cellular and molecular features altered by chronic and recurrent encounters with asbestos fibers, and there may be modification by the surrounding inflammation, all of which eventually lead to decreased tumor immunity. In this paper, the brief results of our investigation regarding reduction of tumor immunity of immunocompetent cells exposed to asbestos in vitro are discussed, as are our findings concerned with an investigation of chronic inflammation and analyses of peripheral blood samples derived from patients with pleural plaque and mesothelioma that have been exposed to asbestos
    corecore