551 research outputs found

    Irreversibility in response to forces acting on graphene sheets

    Full text link
    The amount of rippling in graphene sheets is related to the interactions with the substrate or with the suspending structure. Here, we report on an irreversibility in the response to forces that act on suspended graphene sheets. This may explain why one always observes a ripple structure on suspended graphene. We show that a compression-relaxation mechanism produces static ripples on graphene sheets and determine a peculiar temperature TcT_c, such that for T<TcT<T_c the free-energy of the rippled graphene is smaller than that of roughened graphene. We also show that TcT_c depends on the structural parameters and increases with increasing sample size.Comment: 4 pages, 4 Figure

    Uncertainty in the Fluctuations of the Price of Stocks

    Full text link
    We report on a study of the Tehran Price Index (TEPIX) from 2001 to 2006 as an emerging market that has been affected by several political crises during the recent years, and analyze the non-Gaussian probability density function (PDF) of the log returns of the stocks' prices. We show that while the average of the index did not fall very much over the time period of the study, its day-to-day fluctuations strongly increased due to the crises. Using an approach based on multiplicative processes with a detrending procedure, we study the scale-dependence of the non-Gaussian PDFs, and show that the temporal dependence of their tails indicates a gradual and systematic increase in the probability of the appearance of large increments in the returns on approaching distinct critical time scales over which the TEPIX has exhibited maximum uncertainty.Comment: 5 pages, 5 figures. Accepted to appear in IJMP

    Precursors of extreme increments

    Get PDF
    We investigate precursors and predictability of extreme increments in a time series. The events we are focusing on consist in large increments within successive time steps. We are especially interested in understanding how the quality of the predictions depends on the strategy to choose precursors, on the size of the event and on the correlation strength. We study the prediction of extreme increments analytically in an AR(1) process, and numerically in wind speed recordings and long-range correlated ARMA data. We evaluate the success of predictions via receiver operator characteristics (ROC-curves). Furthermore, we observe an increase of the quality of predictions with increasing event size and with decreasing correlation in all examples. Both effects can be understood by using the likelihood ratio as a summary index for smooth ROC-curves

    Strained graphene: tight-binding and density functional calculations

    Full text link
    We determine the band structure of graphene under strain using density functional calculations. The ab-initio band strucure is then used to extract the best fit to the tight-binding hopping parameters used in a recent microscopic model of strained graphene. It is found that the hopping parameters may increase or decrease upon increasing strain, depending on the orientation of the applied stress. The fitted values are compared with an available parametrization for the dependence of the orbital overlap on the distance separating the two carbon atoms. It is also found that strain does not induce a gap in graphene, at least for deformations up to 10%

    Localization of elastic waves in heterogeneous media with off-diagonal disorder and long-range correlations

    Full text link
    Using the Martin-Siggia-Rose method, we study propagation of acoustic waves in strongly heterogeneous media which are characterized by a broad distribution of the elastic constants. Gaussian-white distributed elastic constants, as well as those with long-range correlations with non-decaying power-law correlation functions, are considered. The study is motivated in part by a recent discovery that the elastic moduli of rock at large length scales may be characterized by long-range power-law correlation functions. Depending on the disorder, the renormalization group (RG) flows exhibit a transition to localized regime in {\it any} dimension. We have numerically checked the RG results using the transfer-matrix method and direct numerical simulations for one- and two-dimensional systems, respectively.Comment: 5 pages, 4 figures, to appear in Phys. Rev. Let

    Forecasting for Social Good

    Full text link
    Forecasting plays a critical role in the development of organisational business strategies. Despite a considerable body of research in the area of forecasting, the focus has largely been on the financial and economic outcomes of the forecasting process as opposed to societal benefits. Our motivation in this study is to promote the latter, with a view to using the forecasting process to advance social and environmental objectives such as equality, social justice and sustainability. We refer to such forecasting practices as Forecasting for Social Good (FSG) where the benefits to society and the environment take precedence over economic and financial outcomes. We conceptualise FSG and discuss its scope and boundaries in the context of the "Doughnut theory". We present some key attributes that qualify a forecasting process as FSG: it is concerned with a real problem, it is focused on advancing social and environmental goals and prioritises these over conventional measures of economic success, and it has a broad societal impact. We also position FSG in the wider literature on forecasting and social good practices. We propose an FSG maturity framework as the means to engage academics and practitioners with research in this area. Finally, we highlight that FSG: (i) cannot be distilled to a prescriptive set of guidelines, (ii) is scalable, and (iii) has the potential to make significant contributions to advancing social objectives.Comment: 28 pages, 6 figure
    • …
    corecore