1,273 research outputs found

    Forecasting the Yield Curve for the Euro Region

    Get PDF
    This paper compares the forecast precision of the Functional Signal plus Noise (FSN), the Dynamic Nelson-Siegel (DL), and a random walk model. The empirical results suggest that both outperform the random walk at short horizons (one-month) and that the the FSN model outperforms the DL at the one-month forecasting horizon. The conclusions provided in this paper are important for policy makers, fixed income portfolio managers, financial institutions and academics.

    Comparison of research framing preferences and information use of state legislators and advocates involved in cancer control, United States, 2012–2013

    Get PDF
    INTRODUCTION: Evidence-based policy plays an important role in prevention of cancer and other chronic diseases. The needs of actors involved in policy decision-making should inform knowledge translation strategies. This study examines the differences between state legislators and advocates in how they seek and use information and what their preferences are for how research information is framed. METHODS: We conducted a cross-sectional comparison of survey responses by US advocates (n = 77) and state legislators (n = 265) working on issues related to cancer control. RESULTS: Advocates differed significantly from legislators on all demographic characteristics. Advocates reported seeking and using information more frequently than legislators, though legislators used legislative research bureaus more often (0.45 point difference, P = .004). Both legislators and advocates prioritized the presentation and timeliness of research information similarly but reported different preferences for source (information bias, information relevance, delivery of information by trusted person) of research information. Several differences between advocates and legislators were modified by participant age. CONCLUSION: Our study provides insights for development of knowledge translation strategies to enhance evidence-based policy making for cancer control that are tailored to state-level legislators and advocates. Additional research efforts should evaluate the effectiveness of such knowledge translation strategies, particularly among advocates

    Myopic Loss Aversion and House-Money Effect Overseas: an experimental approach

    Get PDF
    Recent literature has found two behavioral effects - house-money and myopic loss aversion (MLA) - in several experimental designs. We show that although we can find a house-money effect using survey methods this evidence disappears when we study investment decision within a multi-period investment experiment. Loss aversion is found to govern the risk-taking behavior of subjects in dynamic settings, overcoming the house-money effect. These results are robust to experiments conducted in two different countries, Spain and Brazil.

    Petawatt laser absorption bounded

    Full text link
    The interaction of petawatt (1015 W10^{15}\ \mathrm{W}) lasers with solid matter forms the basis for advanced scientific applications such as table-top particle accelerators, ultrafast imaging systems and laser fusion. Key metrics for these applications relate to absorption, yet conditions in this regime are so nonlinear that it is often impossible to know the fraction of absorbed light ff, and even the range of ff is unknown. Here using a relativistic Rankine-Hugoniot-like analysis, we show for the first time that ff exhibits a theoretical maximum and minimum. These bounds constrain nonlinear absorption mechanisms across the petawatt regime, forbidding high absorption values at low laser power and low absorption values at high laser power. For applications needing to circumvent the absorption bounds, these results will accelerate a shift from solid targets, towards structured and multilayer targets, and lead the development of new materials

    Improving the performance of independent task assignment heuristics minmin, maxmin and mufferage

    Get PDF
    Cataloged from PDF version of article.MinMin, MaxMin, and Sufferage are constructive heuristics that are widely and successfully used in assigning independent tasks to processors in heterogeneous computing systems. All three heuristics are known to run in O(KN2) time in assigning N tasks to K processors. In this paper, we propose an algorithmic improvement that asymptotically decreases the running time complexity of MinMin to O(KN log N) without affecting its solution quality. Furthermore, we combine the newly proposed MinMin algorithm with MaxMin as well as Sufferage, obtaining two hybrid algorithms. The motivation behind the former hybrid algorithm is to address the drawback of MaxMin in solving problem instances with highly skewed cost distributions while also improving the running time performance of MaxMin. The latter hybrid algorithm improves the running time performance of Sufferage without degrading its solution quality. The proposed algorithms are easy to implement and we illustrate them through detailed pseudocodes. The experimental results over a large number of real-life data sets show that the proposed fast MinMin algorithm and the proposed hybrid algorithms perform significantly better than their traditional counterparts as well as more recent state-of-the-art assignment heuristics. For the large data sets used in the experiments, MinMin, MaxMin, and Sufferage, as well as recent state-of-the-art heuristics, require days, weeks, or even months to produce a solution, whereas all of the proposed algorithms produce solutions within only two or three minutes

    Validating an office simulation model using RFID technology

    Get PDF
    This paper presents the validation of an office utilisation model for the research project called "User Simulation of Space Utilisation (USSU)". The result of this research is a system that can be used for analysing and evaluating the space utilisation of a building for any given organisation. A system for building usage simulation that produces data about activities of members of an organisation can substantially improve the relevance and performance of building simulation tools. This is relevant for engineering domains as well as for architects to evaluate the performance of a building design. For a thorough evaluation of the system an experiment was executed for assessing its predictive quality in the context of a real building, organisation and actual human behaviour; this experiment was executed using RFID technology. The result of the experiment was observed data about the space utilisation of the selected organisation. These data were compared with the space utilisation predicted by the USSU system to evaluate the simulation model. The validation of USSU showed that there were no significant differences between the predicated and observed activity behaviour. As a consequence, the output of USSU is considered to be valid

    RFID technology applied for validation of an office simulation model

    Get PDF

    Fast-ignition design transport studies: realistic electron source, integrated PIC-hydrodynamics, imposed magnetic fields

    Full text link
    Transport modeling of idealized, cone-guided fast ignition targets indicates the severe challenge posed by fast-electron source divergence. The hybrid particle-in-cell [PIC] code Zuma is run in tandem with the radiation-hydrodynamics code Hydra to model fast-electron propagation, fuel heating, and thermonuclear burn. The fast electron source is based on a 3D explicit-PIC laser-plasma simulation with the PSC code. This shows a quasi two-temperature energy spectrum, and a divergent angle spectrum (average velocity-space polar angle of 52 degrees). Transport simulations with the PIC-based divergence do not ignite for > 1 MJ of fast-electron energy, for a modest 70 micron standoff distance from fast-electron injection to the dense fuel. However, artificially collimating the source gives an ignition energy of 132 kJ. To mitigate the divergence, we consider imposed axial magnetic fields. Uniform fields ~50 MG are sufficient to recover the artificially collimated ignition energy. Experiments at the Omega laser facility have generated fields of this magnitude by imploding a capsule in seed fields of 50-100 kG. Such imploded fields are however more compressed in the transport region than in the laser absorption region. When fast electrons encounter increasing field strength, magnetic mirroring can reflect a substantial fraction of them and reduce coupling to the fuel. A hollow magnetic pipe, which peaks at a finite radius, is presented as one field configuration which circumvents mirroring.Comment: 16 pages, 17 figures, submitted to Phys. Plasma
    • …
    corecore