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Improving the Performance of
Independent Task Assignment Heuristics

MinMin, MaxMin and Sufferage
E. Kartal Tabak, B. Barla Cambazoglu, Cevdet Aykanat

Abstract—MinMin, MaxMin, and Sufferage are constructive heuristics that are widely and successfully used in assigning
independent tasks to processors in heterogeneous computing systems. All three heuristics are known to run in O(KN2) time
in assigning N tasks to K processors. In this paper, we propose an algorithmic improvement that asymptotically decreases the
running time complexity of MinMin to O(KN logN) without affecting its solution quality. Furthermore, we combine the newly
proposed MinMin algorithm with MaxMin as well as Sufferage, obtaining two hybrid algorithms. The motivation behind the former
hybrid algorithm is to address the drawback of MaxMin in solving problem instances with highly skewed cost distributions while
also improving the running time performance of MaxMin. The latter hybrid algorithm improves the running time performance of
Sufferage without degrading its solution quality. The proposed algorithms are easy to implement and we illustrate them through
detailed pseudocodes. The experimental results over a large number of real-life datasets show that the proposed fast MinMin
algorithm and the proposed hybrid algorithms perform significantly better than their traditional counterparts as well as more recent
state-of-the-art assignment heuristics. For the large datasets used in the experiments, MinMin, MaxMin, and Sufferage, as well
as recent state-of-the-art heuristics, require days, weeks, or even months to produce a solution, whereas all of the proposed
algorithms produce solutions within only two or three minutes.

Index Terms—Parallel processors, heterogeneous systems, load balancing, independent task assignment, MinMin, MaxMin,
Sufferage, constructive heuristics

✦

1 INTRODUCTION

THE focus of this work is on the independent task
assignment problem, which often arises in appli-

cations related to heterogeneous computing systems.
In this problem, we have a set T = {T1, T2, . . . , TN}
of N independent tasks, a set P = {P1, P2, . . . , PK}
of K heterogeneous processors, and an expected-
time-to-compute matrix E = {xi,k}N×K

, where xi,k

denotes the expected execution cost of task Ti on
processor Pk . The objective is to find a task-to-
processor assignment that results in the minimum
turnaround time (makespan). In other words, the
objective is to minimize the load of the maximally
loaded (bottleneck) processor. This problem is known
to be NP-complete [1].

The MinMin heuristic is first introduced in [1] and
since then it is used many times for solving the inde-
pendent task assignment problem, which commonly
emerges in the context of heterogeneous systems [1]–
[13]. MinMin is a constructive heuristic with some
desirable properties. It is free of parameters that re-
quire tuning and is easy to implement. Moreover, it
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is reported to produce “high quality” solutions. Since
its first proposal, the running time of the MinMin al-
gorithm is reported to be O(KN2) in the literature [1],
[4], [5], [8]–[13]. Despite its success, the quadratic
running time complexity of the heuristic prevents its
use in problem instances where the number of tasks
to be assigned is very large. Recently, the MinMin
algorithm is parallelized to enable the application
of the algorithm to large datasets [14]. This parallel
version runs in O(N2K/P+N2+N logP ) time, where
P denotes the number of homogenous processors
used in parallelization of the MinMin algorithm (P
may be different than K).

We believe that the computational complexity of
MinMin is overlooked in the parallel and distributed
computing literature. This mainly stems from the
task-oriented view of MinMin, constituting a lower
bound of Ω(KN2) on the running time. In this paper,
we propose an O(KN logN)-time algorithm that im-
proves this quadratic lower bound by switching from
the task-oriented view to a processor-oriented view.
The proposed MinMin algorithm, which is referred
to herein as MinMin+, attains exactly the same solu-
tion quality as MinMin without degrading the ease
of implementation. The results of our experiments
over a wide range of problem instances indicate that
MinMin+ runs several orders of magnitude faster
than MinMin. For a large dataset that contains about
2.5 million tasks, MinMin finds a 16-way assignment
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in about 22 days, whereas MinMin+ finds the same
assignment in about a minute.

Two other well-known constructive heuristics used
for solving the independent task assignment problem
are MaxMin (MaxMin) [1], [2], [8], [15] and Suffer-
age (Suff) [9]. These heuristics differ from MinMin
in the task selection policy adopted during the task-
to-processor assignment process. In this work, we
propose improvements over these two heuristics as
well. We combine MaxMin with MinMin+ as well as
Suff with MinMin+ to obtain the hybrid algorithms
MaxMin+ and Suff+, respectively.

The assignment of large tasks to their favorite pro-
cessors1 is important to obtain a good makespan,
especially in skewed datasets. Although the MaxMin
heuristic assigns the largest task to its favorite proces-
sor, its inherent mechanism is likely to fail to assign
remaining large tasks to their favorite processors. The
motivation behind MaxMin+ is to address this draw-
back of MaxMin in solving problem instances with
highly skewed cost distributions while also improving
the running time performance of MaxMin.
Suff is reported to be among the algorithms that

yield high-quality solutions [9], [16], [17]. Despite
its success, the quadratic running time prevents the
application of this heuristic to large datasets. The
motivation behind Suff+ is to improve the running
time performance of Suff without degrading the
solution quality.

Although both MaxMin+ and Suff+ are, in the
worst case, still O(KN2)-time algorithms, our experi-
mental results show that they run considerably faster
than the traditional MaxMin and Suff heuristics,
respectively. The experimental results also indicate
that MaxMin+ finds considerably better solutions than
MaxMin while Suff+ finds slightly better solutions
than Suff, on average.
MinMin is also used as a component in the design

of more complex algorithms [2], [18], [19]. Genetic
algorithm (GA) [2], [18] is a typical example of such
complex algorithms. In this work, we also demon-
strate that the running time performance of the GA
algorithm can be significantly improved simply by
replacing MinMin with MinMin+, without affecting
the original solution quality at all.

The rest of the paper is organized as follows. Ta-
ble 1 summarizes the notation used throughout the
paper. Section 2 describes the existing algorithms. The
proposed MinMin+, MaxMin+, Suff+ algorithms, and
the improved GA algorithm are discussed in Section 3.
In Section 4, our experimental setup and results are
presented. The paper is concluded in Section 5.

2 EXISTING ALGORITHMS
MinMin: The MinMin heuristic [1] proceeds in N
iterations. At each iteration, a previously unassigned

1. A processor Pk is said to be a favorite processor for a task Ti

if the expected cost of Ti is minimum on Pk , i.e., k=argmin� xi,�.

TABLE 1
The notation used throughout the paper

Notation Explanation
A task-to-processor assignment vector
E expected-time-compute matrix
G number of chromosomes used in the GA algorithm
H number of iterations of the GA algorithm
K number of processors
M makespan
M∗ ideal makespan
N number of tasks
P set of processors
Pk kth processor
Qk priority queue of Pk in the MinMin+ algorithm
R machine heterogeneity constant
T set of tasks
Ti ith task
U a set of tasks
ek current load of processor Pk

i, j indices that refer to tasks
k, � indices that refer to processors
m number of MaxMin-based assignments in MaxMin+
xi,k computation cost of task Ti on processor Pk

α exponent constant for power-law distribution
γ relative cost for the RC algorithm

task is selected and assigned to a processor. The
selected task is removed from further consideration
in the remaining iterations. The task-to-processor as-
signment in each iteration is decided based on a two-
step procedure. In the first step, MinMin computes the
minimum completion time (MCT) of each unassigned
task over the processors to find the best processor,
which can complete the processing of that task at ear-
liest time. This decision is made taking into account
the current loads of processors (ek) and the execution
time of the task on each processor (xi,k). In the second
step, MinMin selects the task with the minimum MCT
among all unassigned tasks and assigns the task to its
best processor found in the first step. Due to the task
selection policy adopted in the second step, MinMin
favors the assignment of tasks with lower costs in
earlier iterations, and hence the assignment of tasks
with higher costs are usually performed during the
later iterations. The two-step selection algorithm is
provided in Algorithm 1. An O(KN2)-time algorithm
for MinMin is given in Algorithm 2.

MaxMin: MaxMin [1], [2], [8], [15] differs from
MinMin in the task selection policy adopted in the
second step of the task-to-processor assignment pro-
cedure. Unlike MinMin, which selects the task with
the minimum MCT, MaxMin selects the task with
the maximum MCT and then assigns it to the best
processor found in the first step (Algorithm 3). Due
to this task selection policy, MaxMin performs the
assignment of tasks with higher costs in earlier it-
erations. The algorithm for MaxMin is presented in
Algorithm 4.

RASA: In [20], the drawbacks of MaxMin and
MinMin are analyzed and a hybrid algorithm, referred
to as RASA, is proposed. RASA alternates between
MaxMin and MinMin in its iterations. In particular,
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Algorithm 1 MINMINSELECT(U , e, x, K)
1: min ′ ←∞
2: for all i ∈ U do
3: min ←∞
4: for k ← 1 to K do
5: if ek + xi,k < min then
6: min ← ek + xi,k

7: kmin ← k
8: if min < min ′ then
9: min ′ ← ekmin + xi,kmin

10: k′ ← kmin
11: i′ ← i
12: return 〈i′, k′〉

Algorithm 2 MINMIN(x, K , N )
1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0
4: while U is not empty do
5: 〈i′, k′〉 ← MINMINSELECT(U , e, x, K)
6: A[i′]← k′

7: ek′ ← ek′ + xi′,k′

8: U ← U − {i′}

9: return A

Algorithm 3 MAXMINSELECT(U , e, x, K)
1: max ← 0
2: for all i ∈ U do
3: min ←∞
4: for k ← 1 to K do
5: if ek + xi,k < min then
6: min ← ek + xi,k

7: kmin ← k
8: if min > max then
9: max ← ekmin + xi,kmin

10: k′ ← kmin
11: i′ ← i
12: return 〈i′, k′〉

Algorithm 4 MAXMIN(x, K , N )
1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0
4: while U is not empty do
5: 〈i′, k′〉 ← MAXMINSELECT(U , e, x, K)
6: A[i′]← k′

7: ek′ ← ek′ + xi′,k′

8: U ← U − {i′}

9: return A

Algorithm 5 RASA(x, K , N )
1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0
4: for r ← 1 to N do
5: if r is odd then
6: 〈i′, k′〉 ← MAXMINSELECT(U , e, x, K)
7: else
8: 〈i′, k′〉 ← MINMINSELECT(U , e, x, K)

9: A[i′]← k′

10: ek′ ← ek′ + xi′,k′

11: U ← U − {i′}

12: return A

Algorithm 6 SUFFSELECT(U , x, K , N )
1: sufferage ′ ← 0
2: for all i ∈ U do
3: min ←∞
4: second min ←∞
5: for k ← 1 to K do
6: if ek + xi,k < min then
7: second min ← min
8: min ← ek + xi,k

9: kmin ← k
10: else if ek + xi,k < second min then
11: second min ← ek + xi,k

12: sufferage ← second min −min
13: if sufferage > sufferage ′ then
14: sufferage ′ ← sufferage
15: k′ ← kmin
16: i′ ← i
17: return 〈i′, k′〉

Algorithm 7 SUFF(x, K , N )
1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0
4: while U is not empty do
5: 〈i′, k′〉 ← SUFFSELECT(U , e, x, K)
6: A[i′]← k′

7: ek′ ← ek′ + xi′,k′

8: U ← U − {i′}

9: return A

MaxMin is used in odd rounds while MinMin is used
in even rounds. The RASA algorithm, which runs in
O(KN2) time, is displayed in Algorithm 5.

Sufferage: The main difference between Suff [9]
and MinMin is the task selection policy. In the first
step of the process, Suff computes the second MCT
value in addition to the MCT value for each task. In
the second step, the sufferage value, which is defined
as the difference between the MCT and the second
MCT values of a task, is taken into account. Suff
selects the task with the largest sufferage and assigns
it to the best processor found in the first step. The
algorithm for Suff is presented in Algorithm 7.

Relative Cost (RC): RC [17] is a constructive heuris-
tic similar to MinMin, but it uses a different selection
criterion which does not lead to a bias between small
tasks and large tasks. At each iteration of the algo-
rithm, RC selects the task with the lowest relative cost,
which is calculated as

γ =

(
mink {xi,k + ek}

avgk {xi,k + ek}

)
+

(
xi,k∗(i)

avgk {xi,k}

)ξ

, (1)

where k∗(i) = argmink {xi,k + ek} in the current itera-
tion. The selected task is assigned to processor k∗(i).
ξ is a parameter in the [0, 1] range and is used to
control the effects of the first and second terms in
Eq. 1. RC is reported as a high-quality algorithm and
runs in O(KN2) time. The RC algorithm is displayed
in Algorithm 8.
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Algorithm 8 RC(x, K , N )
1: U ← {1, 2, . . . , N}
2: for k ← 1 to K do
3: ek ← 0
4: for i← 1 to N do
5: avg ← avgk{xi,k}
6: for k ← 1 to K do
7: γs[i, k]← xi,k/avg

8: for j ← 1 to N do
9: γ min ←∞

10: for i← 1 to N do
11: avg ← avgk{ek + xi,k}
12: k ← argmink{ek + xi,k}
13: min ← xi,k

14: γ ← min/avg × γs[i, k]
ξ

15: if γ < γ min then
16: γ min ← γ
17: i ′ ← i
18: k ′ ← k
19: A[i′]← k′

20: ek′ ← ek′ + xi′,k′

21: U ← U − {i′}

22: return A

Genetic Algorithm (GA): GA [2], [18] is an example
of more complex algorithms that use MinMin as a
component. GA uses MinMin as an initial chromosome
and improves the solution of MinMin using genetic
algorithm techniques. In this approach, each chromo-
some represents a different task-to-processor assign-
ment. Assuming G chromosomes, one of the chromo-
somes is initially populated with MinMin while the
remaining G−1 chromosomes are populated with ran-
dom assignments. Maintaining the best assignment
(elitism) guarantees that the solution quality of GA is
not worse than the quality of MinMin. Crossover is
implemented as a single random cross on the paired
chromosomes. Mutation is defined as reassigning a
random task to a random processor. The initial pop-
ulation runs in O(KN2 +G logG+NG) time. Each
iteration of GA runs in O(NG+G2) time. Hence, GA
runs in O(KN2+HNG+HG2) time, where H is the
number of iterations.

3 PROPOSED ALGORITHMS
3.1 MinMin+
The high running time complexity of the MinMin
algorithm stems from the O(KN)-time cost that is
incurred while computing the MCT values for every
unassigned task and processor pair. Note that the
MCT values and the best processor of an unassigned
task may change at each iteration of the loop in
Algorithm 2. This is because the ek + xi,k value as-
sociated with an unassigned task Ti and processor Pk

may change as the ek values are updated throughout
the iterations. Without any loss of generality, let us
assume that a task is assigned to a processor Pk

in the previous iteration. This assignment increases

the ek value. Therefore, in the next iteration, the
ek + xi,k values for all unassigned tasks need to be
recomputed for processor Pk. This task-oriented view
of the MinMin algorithm forms a lower bound of
Ω(KN2) on the running time of the algorithm.

In this work, we demonstrate that the above-
mentioned quadratic lower bound can be avoided by
switching from the task-oriented view to a processor-
oriented view. To this end, we propose a novel al-
gorithm, referred to as MinMin+. In this algorithm,
the MCT values that are associated with each pro-
cessor are separately maintained, instead of being
unnecessarily recomputed at each iteration for every
unassigned task. In particular, we use a priority queue
Qk for each processor Pk to maintain the completion
times of all tasks on that processor. More specifically,
each task Ti is maintained in K different priority
queues, keyed by their xi,k values. Each priority
queue Qk supports the MIN, DELETE, and BUILD
operations. MIN(Qk) is a query operation that returns
the id of the unassigned task that has the minimum
completion time on processor Pk. DELETE(Qk, i) is an
update operation that removes task Ti from Qk. The
BUILD(k) operation initializes the data structures. We
also maintain a boolean array F of size N . Each array
element F [i] indicates whether task Ti is yet assigned
to a processor or not. Initially, we set all F [i] values
to FALSE since no task is assigned to a processor at
the beginning.

The proposed MinMin+ algorithm is given in Algo-
rithm 9. The MinMin+Init function (Algorithm 10)
is called in the first line of the algorithm to perform
the necessary initializations. The following main loop
(lines 2–8) performs N iterations, assigning a task to
a processor at each iteration. The MinMin+Select
function (Algorithm 11) invokes a MIN(Qk) operation
on each priority queue Qk to find a candidate task
for processor Pk . The candidate task Ti selected for
processor Pk is effectively the task that will increase
the current completion time of Pk (i.e., ek) by the
smallest amount if Ti is assigned to Pk. For each
processor Pk, the execution time of the candidate task
Ti on Pk is added to ek to compute the updated ek
value for Pk if Ti is assigned to Pk . A running-min
operation performed over these K updated ek values
gives the minimum MCT value (min) for the current
iteration as well as the task-to-processor assignment
(i ′, k ′) that achieves this minimum MCT value. At the
end of each iteration of the main loop, the assigned
task Ti′ is deleted from all priority queues (lines 7 and
8).

For the implementation of the priority queue, we
have considered two alternatives: binary heap and
sorted linear array. Although both implementations
lead to the same worst-case running time complexity,
our empirical results indicate that the sorted linear
array implementation yields significantly lower exe-
cution times compared to the binary-heap implemen-
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Algorithm 9 MINMIN+(x, K , N )
1: 〈e, F,Q〉 ← MINMIN+INIT(x, K)
2: for j ← 1 to N do
3: 〈i′, k′〉 ← MINMIN+SELECT(Q, e, K)
4: A[i ′]← k ′

5: ek′ ← ek′ + xi′,k′

6: F [i ′]← TRUE
7: for k ← 1 to K do
8: DELETE(Qk, i

′)
9: return A

Algorithm 10 MINMIN+INIT(x, K)
1: for k ← 1 to K do
2: ek ← 0
3: for i← 1 to N do
4: F [i]← FALSE
5: for k ← 1 to K do
6: Qk ← BUILD(k)
7: � Qk contains records of 〈i, xi,k〉 .
8: return 〈e, F,Q〉

Algorithm 11 MINMIN+SELECT(Q, e, K)
1: min ←∞
2: for k ← 1 to K do
3: 〈i, x〉 ← MIN(Qk)
4: if ek + x < min then
5: min ← ek + x
6: k ′ ← k
7: i ′ ← i
8: return 〈i′, k′〉

tation. Hence, in what follows, we present the running
time analysis of the MinMin+ algorithm only for the
sorted linear array implementation.

In the sorted linear array implementation, for each
processor Pk, we maintain a linear array Qk, which
contains N tuples of the form 〈i, xi,k〉. The BUILD
operation sorts the tuples in Qk in increasing order
of the xi,k values. For each Qk, we maintain an
index bk, indicating the unassigned task that currently
has the smallest completion time on processor Pk.
The BUILD operation initializes the bk value to 1.
The overall running time of the BUILD operation is
O(N logN). The MIN(Qk) operation can be realized
in O(1) time, simply by returning the task id of the
bk-th tuple in Qk. After a task Ti is assigned to a
processor, it is deleted by setting F [i] to TRUE and
running a DELETE(Qk) operation on every Qk. Since
Qk[1, . . . , bk − 1] contains the tasks that are already
assigned, the DELETE(Qk) operation can be realized
by advancing the bk index on Qk until an unassigned
task is encountered. Although the worst-case running
time of an individual DELETE(Qk) operation is O(N),
the amortized cost of DELETE(Qk) operation is O(1).
This is because N DELETE operations performed on
Qk can lead to at most N increments on bk. This
simple yet efficient implementation of the DELETE
operation makes the sorted linear array implemen-
tation preferable over the binary heap implementa-

tion. The proposed MinMin+ algorithm involves K
BUILD(k), K×N MIN(Qk), and K×N DELETE(Qk)
operations. Hence, the overall running time complex-
ity is O(KN logN +KN +KN) = O(KN logN).

3.2 MaxMin+
In some problem instances, the task sizes follow a
power-law distribution, i.e., there are a small num-
ber of very large tasks and a very large number of
small tasks. In such cases, the assignment of large
tasks can have a significant impact on the load of
the most heavily loaded processor (i.e., makespan)
and determine the resulting solution quality. In case
of the MinMin heuristic, due to the adopted task
selection policy, smaller tasks are assigned in earlier
iterations, delaying the assignment of larger tasks to
later iterations. The solution quality obtained in the
earlier iterations is likely to deteriorate due to the
late assignment of very large tasks. In case of the
MaxMin heuristic, the larger tasks are assigned in
earlier iterations, but not necessarily to their favorite
processors. To demonstrate the issue, let us consider
the first few iterations of MaxMin. The first iteration
assigns the largest task to its favorite processor. Let
us assume that the second largest task has the same
favorite processor as the largest task. In the second
iteration, the task selection policy of MaxMin prevents
the assignment of the second largest task to its favorite
processor. In the next iteration, the third largest task
loses the flexibility of being assigned to the favorite
processors of the largest two tasks and so on.

To alleviate the above-mentioned drawbacks of the
MinMin and MaxMin heuristics, we combine these
two heuristics under a hybrid heuristic, which we
refer to as MaxMin+. Like MinMin and MaxMin, the
MaxMin+ heuristic involves a main loop that assigns
a selected task to a processor at each iteration. Within
an iteration, the heuristic first computes a task-to-
processor assignment according to the MinMin heuris-
tic. The computed assignment is realized only if it
does not lead to an increase in the makespan of the
previous iteration. If, however, the computed assign-
ment increases the makespan, the task-to-processor
assignment is recomputed according to the MaxMin
heuristic.

The MaxMin+ algorithm is presented in Algo-
rithm 12, using the asymptotically faster MinMin+
algorithm proposed in Section 3.1 instead of the
standard MinMin algorithm. In the algorithm,
MinMin+Init (line 3) performs the necessary initial-
izations as in MinMin+. Line 5 computes the task-
to-processor assignment according to MinMin+. The
if statement at line 6 checks whether the computed
assignment increases the current makespan. Line 7
computes the task-to-processor assignment according
to MaxMin.

As described in Section 2, the RASA heuristic also
combines MinMin and MaxMin. In RASA, MinMin is
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Algorithm 12 MAXMIN+(x, K , N )
1: U ← {1, 2, . . . , N}
2: makespan ← 0
3: 〈e, F,Q〉 ← MINMIN+INIT(x, K)
4: while U is not empty do
5: 〈i′, k′〉 ← MINMIN+SELECT(Q, e, K)
6: if ek′ + xi′,k′ > makespan then
7: 〈i′, k′〉 ← MAXMINSELECT(U , e, x, K)
8: makespan ← ek′ + xi′,k′

9: A[i′]← k′

10: ek′ ← ek′ + xi′,k′

11: U ← U − {i′}
12: F [i′]← TRUE
13: for k ← 1 to K do
14: DELETE(Qk, i

′)
15: return A

executed in odd-numbered iterations while MaxMin
is executed at even-numbered iterations. The pro-
posed MaxMin+ heuristic differs from RASA in that
the choice between MinMin and MaxMin at each
iteration is made in an adaptive manner, considering
the current processor loads. The experimental results
reported in Section 4 shows the success of this adap-
tive policy with respect to the policy adopted in RASA.

The running time of MaxMin+ depends on the
frequency of MaxMin-based assignments. In practice,
MaxMin+ is expected to run slower than MinMin+
since line 7 is executed when the assignment is per-
formed according to MaxMin. MaxMin+ is expected to
run faster than MaxMin. The performance of MaxMin+
depends on the ratio of the MaxMin-based assign-
ments to the total number of assignments.

In the following lemmas, we describe the theoretical
behavior of the MaxMin+ algorithm and find the
expected number of MaxMin-based assignments for
some statistical distributions. We present the proofs
of our lemmas and theorems in the appendix not to
interrupt the flow of the paper.

Lemma 3.1: MaxMin+ makes one MaxMin-based as-
signment in the best case, and makes N MaxMin-
based assignments in the worst case.

Lemma 3.2: MaxMin+ runs in O(KN logN +KNm)
time, where m is the number of MaxMin-based assign-
ments.

In general, the number of MaxMin-based assign-
ments is expected to decrease with both increasing
heterogeneity and increasing K . The former expecta-
tion is due to the higher variation in task execution
costs with increasing heterogeneity, which generally
results in an increase in the ratio between the weights
of larger tasks and smaller tasks. Hence, a MaxMin-
based assignment of a large task will be amortized
by a large number of MinMin-based assignments of
smaller tasks. The latter expectation is due to the extra
processing power provided by the additional proces-
sors, which results in more room for the MinMin
selections until the makespan changes. The experi-

mental results reported in Section 4.2.1 support this
expectation.

We present the following theorems for the special
and possibly the worst case of K = 2 homogenous
processors.

Theorem 3.1: For K = 2 homogenous processors, if
the task weights of a dataset have a power-law dis-
tribution with the probability density function f(x)=
Cx−α for x>xmin and α > 2, the expected number of

MaxMin-based assignments is
(
1
2

)α−1

α−2 N .
Note that, if α gets closer to 2, the number of

MaxMin-based assignments decreases.
Theorem 3.2: For K = 2 homogenous processors,

if the task weights of a dataset are uniformly dis-
tributed between xmin and xmax, the expected number
of MaxMin-based assignments is 2r−

√
2r2+2

2r−2 N , where
r=xmax/xmin.

Corollary 3.1: For K = 2 homogenous processors,
if the task weights of a dataset are uniformly dis-
tributed between xmin and xmax, the expected number
of MaxMin-based assignments is greater than 0.28N .

According to Theorem 3.1, for a skewed dataset
with a typical α value of 2.33 [21], the expected upper
bound on the number of MaxMin-based assignments
to be performed by MaxMin+ is 0.061N . That is,
at most 6.1% of the assignments will be expensive
MaxMin-based assignments. This approximately cor-
responds to a speedup of 16 with respect to MaxMin.

According to Theorem 3.2, for a uniform dataset
with xmax/xmin=2, the expected number of MaxMin-
based assignments to be performed by MaxMin+ is
41% of the total number of assignments. These the-
oretical findings show that the relative speedup of
MaxMin+ over MaxMin is expected to be much higher
on skewed datasets. The experimental results given in
Section 4.2.1 validate this expectation.

3.3 Suff+
Despite the success of Suff in producing high quality
solutions [9], [16], [17], its quadratic running time
prevents the application of Suff to large datasets. To
make Suff applicable to large datasets, we combine
it with MinMin+, under a new heuristic referred to
as Suff+. The main idea behind the Suff+ heuristic
is to perform critical assignment decisions by Suff
so that the solution quality is not significantly de-
graded and perform non-critical assignment decisions
by the fast MinMin+ algorithm. With this approach,
we expect a considerable decrease in the execution
time of Suff with a small potential degradation in
the solution quality.

In Suff+, the criticality of an assignment decision
is determined by the effect of a possible MinMin+
assignment on the makespan. At each assignment
iteration, Suff+ first computes a task-to-processor
assignment according to MinMin+. The computed
assignment is realized only if it does not lead to an
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Algorithm 13 SUFF+(x, K , N )
1: U ← {1, 2, . . . , N}
2: makespan ← 0
3: 〈e, F,Q〉 ← MINMIN+INIT(x, K)
4: while U is not empty do
5: 〈i′, k′〉 ← MINMIN+SELECT(Q, e, K)
6: if ek′ + xi′,k′ > makespan then
7: 〈i′, k′〉 ← SUFFSELECT(U , e, x, K)
8: makespan ← ek′ + xi′,k′

9: A[i′]← k′

10: ek′ ← ek′ + xi′,k′

11: U ← U − {i′}
12: F [i′]← TRUE
13: for k ← 1 to K do
14: DELETE(Qk, i

′)
15: return A

increase in the makespan of the previous iteration.
If, however, the MinMin+-based assignment increases
the makespan, the task-to-processor assignment is
recomputed according to the Suff heuristic.

The algorithm for Suff+ is provided in Algo-
rithm 13. As in MaxMin+, the MinMin+Init function
(line 3) performs the necessary initializations. Line 5
computes the assignment according to MinMin+.
The comparison operation at line 6 checks whether
makespan will change if the computed assignment is
used. Line 7 computes the task-to-processor assign-
ment according to Suff.

3.4 GA+
Traditionally, the MinMin heuristic is used as a sub-
module in more complex task assignment algorithms.
As mentioned in Section 2, GA is such an algorithm
since it uses MinMin to find an initial solution. In
the literature, GA is reported as a slow algorithm,
compared to O(KN2) algorithms such as MaxMin and
RC [2], [17].

Herein, we consider GA to illustrate the impact of
using MinMin+ instead of MinMin on the perfor-
mance of complex task assignment algorithms. Incor-
poration of the MinMin+ heuristic into GA leads to
an asymptotically faster algorithm, which we refer to
as GA+. This combination retains the original solution
quality of GA. GA+ runs in O(KN logN+HNG+HG2)
time, making it run much faster than O(KN2) al-
gorithms and rendering it practical even for large
datasets.

4 EXPERIMENTAL RESULTS
4.1 Datasets
The datasets used in the experiments belong to dif-
ferent application areas: social-network analysis, dis-
tributed web crawling, image-space-parallel direct
volume rendering (DVR), and row-parallel sparse ma-
trix vector multiplication (SpMxV). In these contexts,

TABLE 2
Properties of the datasets

Task weights
Dataset N Max. Avg. α

Social networks
coauthorship 725,344 672 6.81 3.43± 0.04
commonJob 241,233 10,270 7.08 2.30± 0.01

Distributed web crawling
ClueWeb-B 799,115 6.1×106 61.56 2.23± 0.00
ClueWeb-A 2,483,726 1.5×109 1010.50 2.16± 0.00

Image-space-parallel direct volume rendering (DVR)
blunt 20,611 171 90.95 6.51± 0.29
comb 32,238 149 64.58 3.84± 0.22

Row-parallel sparse matrix vector multiplication (SpMxV)
barrier2-1 113,076 7,031 33.65 3.78± 0.20
language 399,130 11,555 3.05 2.59± 0.01
k3plates 11,107 58 34.12 6.42± 0.92
big 13,209 12 6.92 7.42± 1.57
olafu 16,146 89 62.87 6.29± 0.81
mark3jac060 27,449 44 6.22 3.06± 0.16
Zhao1 33,861 6 4.92 4.60± 2.31
dawson5 51,537 33 19.61 3.02± 0.63
epb3 84,617 6 5.48 1.79± 0.79
lung2 109,460 8 4.50 2.33± 0.26
hood 220,542 77 48.83 6.56± 2.16
Lin 256,000 7 6.90 1.16± 0.10
pre2 659,033 628 9.04 2.50± 0.07

(*) Rows in gray indicate skewed datasets.

the independent task assignment problem arises in
load balancing of parallel/distributed applications.
These datasets are displayed in Table 2.

Our social network datasets (coauthorship and
commonJob) are in the form of sparse graphs. In
coauthorship, each vertex represents an author and
an edge represents the coauthorship relation between
two authors. In commonJob, each vertex represents an
employee and there is an edge between two vertices
if the respective employees have ever worked in the
same company. The coauthorship and commonJob
datasets are obtained from DBLP2 and LinkedIn3,
respectively. In both of these graphs, a vertex repre-
sents a task to be processed. The degree of a vertex
corresponds to the cost of executing the task.

In distributed web crawling datasets (ClueWeb-A
and ClueWeb-B), the tasks represent the web sites
and the processors represent the crawlers that will
download the pages in the web sites. The weight
of a task is set to the number of pages in the re-
spective web site. The ClueWeb-A and ClueWeb-B
datasets, which are obtained from the ClueWeb-09
collection [22], are the largest two datasets among our
datasets.

In row-parallel DVR datasets (blunt and comb),
rendering each rectangular pixel block of an image
forms a separate task. The weight of a task is set to
the expected number of ray-face intersections to be
performed while rendering the pixels in the respective
pixel block [23]. blunt (blunt fin) and comb (combus-
tion) are two curvilinear datasets obtained from the
NASA Ames Research Center [24].

2. http://www.informatik.uni-trier.de/∼ley/db/
3. http://www.linkedin.com/
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Fig. 1. Log-log plots of the cumulative density distribution of task weights for skewed datasets ((a)–(f)) and
non-skewed datasets ((g)–(j)). x-axis: weights of tasks, y-axis: cumulative density distribution, i.e., P (X ≥ x).

In row-parallel SpMxV datasets, each task corre-
sponds to computing the inner product of a distinct
row of the sparse matrix with a dense column vector.
The weight of a task is equal to the number of nonze-
ros in the respective row. We use 13 sparse matrices
that are selected from the University of Florida sparse
matrix collection [25].

For the distributed web crawling datasets, the ETC
value of each task on each crawler is calculated us-
ing the techniques described in [26]. For the other
datasets, the ETC matrices are constructed using the
high machine heterogeneity method discussed in [27].
For each xi,k , we multiply the weight of the corre-
sponding task with a random integer in the range
[1 . . . R], where R is the machine heterogeneity con-
stant. Following [27], we selected R as 100 to reflect
high machine heterogeneity. For all datasets, the ETC
matrices are generated for K ∈ {4, 8, 16, 24, 32} pro-
cessors. Each dataset and K value combination forms
a different assignment instance for our experiments.
Since we have 19 datasets and five different K values,
we have a total of 95 assignment instances.

In Table 2, the Max and Avg columns display
the maximum and average task weights, respectively.
The α column shows the exponent constant of the
power-law distribution p(w)=Cw−α of task weights,
together with their error margins. The α values are
computed by using the linear least squares method
on log-log distributions of the datasets and are used
here to identify the datasets with power-law dis-
tributions. The datasets that have α values with
low error margin and high max/avg ratio are good
candidates to have power-law distributions. In this
respect, coauthorship, commonJob, ClueWeb-B,
ClueWeb-A, barrier2-1, and language datasets
are considered to have a power-law distribution. In
the remaining tables, the rows are colored in gray to
indicate skewed datasets.

Fig. 1 displays the log-log plots of the cumulative
density distribution of task weights for the datasets.

In the figure, the plots for skewed and non-skewed
datasets are presented in (a)–(f) and (g)–(j), respec-
tively. Note that the plots for only four datasets out
of 13 SpMxV datasets are displayed in Fig. 1. The
complete list of plots can be found in Appendix.

4.2 Performance Analysis
All of the algorithms are implemented in Java pro-
gramming language. All experiments were carried out
on a Linux workstation equipped with six 2100-MHz
quad-core CPUs and 132 GB of memory.

The load balancing quality of the assignment algo-
rithms are compared according to the percent load
imbalance ratio defined as

%LI = 100×
M −M∗

M∗ , (2)

where M denotes the makespan of an assignment
produced by an algorithm and M∗ denotes the ideal
makespan for the given assignment instance. M∗ is
computed as

M∗ =
W ∗

tot

K
=

∑
i mink{xi,k}

K
, (3)

where W ∗
tot is the execution time obtained when

the tasks are assigned to their favorite processor.
This value forms a rather loose lower bound for
the makespan. The optimal makespan is potentially
greater than M∗.

Tables 3–6 display the load imbalance values for 4-,
8-, 16-, 24-, and 32-way assignments obtained by the
existing (baseline) and proposed heuristics for differ-
ent types of datasets. Table 7 displays load imbalance
averages for different K values over all datasets. In
these tables, we display the results of MinMin and
MinMin+ in the same column, since these heuristics
attain the same results. The results of GA and GA+ are
displayed in the same column due to the same reason.

Tables 8–11 display the running times of the heuris-
tics for different types of datasets. Table 12 displays
running time averages for different K values over all
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TABLE 3
Percent load imbalance values for social network datasets

Original heuristics Proposed heuristics
MM GA

Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+
4 204.94 0.08 0.01 163.35 0.10 0.13 0.02 0.04
8 280.50 0.58 0.02 229.68 0.13 0.07 0.06 0.07

coauthorship 16 316.25 1.86 0.10 263.86 0.48 0.11 0.24 0.30
24 315.95 2.43 0.22 266.97 0.76 0.11 0.34 0.43
32 310.82 2.66 0.19 262.12 1.69 0.30 0.80 0.96

4 163.19 0.71 1.07 143.40 1.87 0.72 0.53 0.81
8 218.67 2.51 0.63 192.47 8.97 1.46 1.86 3.75

commonJob 16 239.99 5.26 3.28 212.25 18.92 3.87 10.14 9.24
24 235.61 5.62 5.08 213.56 23.90 8.77 17.85 14.50
32 227.71 6.97 4.58 204.58 37.28 14.51 16.81 23.42

TABLE 4
Percent load imbalance values for distributed web crawling datasets

Original heuristics Proposed heuristics
MM GA

Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+
4 81.49 22.28 19.91 80.06 41.82 17.24 18.52 37.62
8 175.88 102.35 103.61 173.05 168.72 99.63 99.02 159.99

ClueWeb-B 16 230.77 162.19 161.96 227.42 319.82 160.48 155.16 306.18
24 286.10 222.08 224.38 282.29 476.91 230.77 230.77 458.82
32 323.97 323.97 324.50 323.97 607.80 323.97 323.97 589.19

4 172.02 172.02 173.35 172.02 205.18 172.02 172.02 204.82
8 436.41 436.41 436.85 436.41 482.96 436.41 436.41 482.31

ClueWeb-A 16 802.88 802.88 802.92 802.88 891.27 802.88 802.88 889.61
24 1286.95 1286.95 1286.98 1286.95 1393.57 1286.95 1286.95 1388.59
32 1763.49 1763.49 1763.53 1763.49 1868.91 1763.49 1763.49 1862.57

TABLE 5
Percent load imbalance values for parallel DVR datasets

Original heuristics Proposed heuristics
MM GA

Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+
4 185.24 0.10 0.06 102.04 0.11 1.12 0.07 0.04
8 253.94 0.65 0.27 155.03 0.29 0.65 0.23 0.12

blunt 16 276.43 1.86 0.52 175.31 0.60 0.60 0.54 0.34
24 275.48 2.25 1.37 176.10 1.02 0.78 1.02 0.47
32 269.72 2.52 2.07 172.12 1.42 1.07 1.18 0.74

4 187.83 0.10 0.05 116.36 0.08 0.67 0.09 0.03
8 252.82 0.74 0.12 169.19 0.16 0.48 0.17 0.08

comb 16 278.85 1.83 0.43 195.78 0.49 0.31 0.35 0.24
24 276.05 2.56 0.86 191.02 0.85 0.66 0.83 0.47
32 271.01 2.81 1.40 189.24 0.94 0.70 0.92 0.55

datasets. These averages are obtained by normalizing
the running time values with those attained by the
MinMin+ heuristic.

In Tables 6 and 11, the performance results for
row-parallel SpMxV datasets are presented only for
four sample sparse matrices out of 13 matrices. The
complete results for this particular type of datasets
are reported in Appendix. The average performance
results displayed in Tables 7 and 12, however, are
computed by considering the performance results of
all datasets.

In Tables 3–6, the bold value(s) in each row indicate
the best solution(s) in terms of load balancing perfor-
mance for the respective assignment instance. In all
tables, the MinMin, MinMin+, MaxMin, and MaxMin+
heuristics are abbreviated as MM, MM+, MxM, and
MxM+, respectively.

4.2.1 Comparison with Traditional Counterparts

In this subsection, we discuss the performance of each
proposed heuristic against its traditional counterpart.
MinMin+ versus MinMin: As mentioned in Sec-

tion 3.1, MinMin+ finds exactly the same solutions
as MinMin. However, MinMin+ is several orders of
magnitude faster than MinMin in all assignment in-
stances. On average, MinMin+ is 5603-, 3703-, 4192-,
3214-, and 2947-times faster than MinMin in 4-, 8-, 16-,
24-, and 32-way assignments, respectively.

As expected, the speedup of MinMin+ over MinMin
increases with increasing number of tasks. For the 16-
way assignment of the largest dataset ClueWeb-A,
which contains about 2.5 million tasks, MinMin finds
a solution in about 22 days while MinMin+ finds the
same solution in about a minute, i.e., MinMin+ runs
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TABLE 6
Percent load imbalance values for parallel SpMxV datasets

Original heuristics Proposed heuristics
MM GA

Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+
4 202.22 0.12 0.01 119.77 0.89 0.46 0.04 0.15
8 278.87 0.59 0.03 180.31 2.25 0.26 0.09 0.51

barrier2-1 16 310.18 1.38 0.09 208.49 0.36 0.19 0.12 0.18
24 311.27 2.10 0.30 210.86 7.56 0.28 0.21 2.42
32 303.48 2.25 0.30 207.41 1.39 0.26 0.30 0.77

4 198.73 0.38 0.03 121.62 1.68 0.27 0.03 0.63
8 286.72 2.59 0.33 186.64 7.30 0.27 0.44 3.23

language 16 315.71 3.98 1.31 214.60 27.98 1.15 2.01 22.87
24 319.59 2.51 0.57 219.26 5.72 0.57 4.49 3.20
32 308.00 4.37 1.79 212.24 58.74 4.49 3.70 51.44

4 184.48 0.16 0.11 104.11 0.09 1.04 0.11 0.04
8 247.81 0.80 0.34 152.60 0.27 0.58 0.28 0.12

olafu 16 269.75 1.78 0.88 172.10 0.81 0.69 0.63 0.37
24 267.79 2.79 1.47 172.49 0.96 0.90 1.22 0.57
32 258.30 2.98 2.30 171.92 1.14 1.15 1.23 0.76

4 218.44 0.01 0.01 115.61 0.01 0.41 0.01 0.01
8 324.60 0.13 0.01 193.65 0.01 0.29 0.03 0.01

Lin 16 361.38 0.62 0.05 223.68 0.05 0.17 0.05 0.02
24 358.59 1.01 0.07 223.51 0.07 0.14 0.06 0.04
32 349.33 1.12 0.09 219.01 0.10 0.13 0.09 0.09

TABLE 7
Averages of percent load imbalance values over all datasets

Original heuristics Proposed heuristics
MM GA

Dataset K MxM Suff RC RASA MM+ MxM+ Suff+ GA+
4 170.43 32.60 32.40 133.37 41.92 31.81 31.86 40.68
8 279.51 90.84 90.25 233.09 111.72 89.68 89.65 108.31

Skewed 16 369.30 162.92 161.61 321.58 209.80 161.45 161.76 204.73
24 459.25 253.61 252.92 413.32 318.07 254.57 256.77 311.33
32 539.58 350.62 349.15 495.64 429.30 351.17 351.51 421.39

4 195.60 0.10 0.04 113.24 0.08 0.74 0.06 0.04
8 270.44 0.60 0.16 170.93 0.20 0.45 0.18 0.09

Non-skewed 16 298.36 1.62 0.52 195.76 0.58 0.46 0.44 0.30
24 295.70 2.16 1.15 195.37 1.04 0.64 0.73 0.56
32 288.46 2.39 1.16 192.02 1.22 0.79 1.14 0.72

about 31,400 times faster than MinMin.
MaxMin+ versus MaxMin: MaxMin+ finds drasti-

cally better solutions than MaxMin in all assign-
ment instances, except for the 32-way assignment
of ClueWeb-B and the assignment instances of
ClueWeb-A, where both heuristics find solutions with
the same makespan. The averages displayed in Ta-
ble 7 demonstrate the large quality difference be-
tween MaxMin+ and MaxMin. On average, MaxMin+
attains average load imbalance values of 177.74% and
0.62% compared to 363.61% and 269.71% of MaxMin,
for skewed and non-skewed datasets, respectively.
Moreover, MaxMin+ is several orders of magnitude
faster than MaxMin in all assignment instances. On
average, MaxMin+ runs 6917- and 404-times faster
than MaxMin for skewed and non-skewed datasets,
respectively. Note that the performance gaps between
MaxMin+ and MaxMin in load balancing and run-
ning time are much higher in non-skewed datasets
compared to skewed datasets in favor of MaxMin+.
The former is expected since MaxMin is highly tuned
for skewed datasets and fails to find good solutions
for non-skewed datasets, whereas MaxMin+ is a more

balanced heuristic. The latter is also expected since
skewed datasets generally contain much larger num-
ber of tasks than non-skewed datasets.

Table 13 displays the number of MaxMin-based
assignments performed by MaxMin+. As seen in this
table, in general, the number of MaxMin-based as-
signments considerably decreases with increasing K
values, thus conforming with the expectation given
in Section 3.2. This behavior explains the decrease in
the running time performance gap between MaxMin+
and MinMin+ with increasing K as shown in Table 12.
Even for the smallest K value of four, the number
of MaxMin-based assignments is much smaller than
the number of MinMin-based assignments for each
instance. For K = 4, the worst case occurs for the
big matrix, where only 9.25% of the assignments
are MaxMin-based assignments. These results show
that the expected number of MaxMin-based assign-
ments given in Theorem 3.1 for K = 2 homogenous
processors is a rather loose upper bound for K ≥ 4
heterogeneous processors.

As seen in Table 13, MaxMin+ makes only one
MaxMin-based assignment for the 32-way assign-
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TABLE 8
Running times (seconds) of heuristics for social network datasets

Original heuristics Proposed heuristics
Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+

4 53,859.2 63,053.1 67,678.7 89,023.9 64,896.3 54,884.8 5.7 172.5 387.4 1,031.2
8 70,204.6 66,434.0 97,158.5 1.2×105 81,245.7 72,146.3 11.5 71.8 218.3 1,953.2

coauthorship 16 1.2×105 1.4×105 2.0×105 1.9×105 1.4×105 1.3×105 20.9 66.3 168.2 4,407.1
24 1.8×105 2.0×105 2.8×105 2.4×105 1.7×105 1.9×105 33.4 85.7 235.6 4,277.8
32 2.1×105 2.1×105 3.5×105 2.8×105 1.9×105 2.2×105 40.9 84.8 171.4 4,414.9

4 8,276.9 6,810.9 5,346.2 4,883.6 7,059.9 8,781.3 1.3 2.3 2.7 505.6
8 8,242.8 9,522.5 9,031.0 9,810.2 8,604.5 9,375.7 2.4 3.0 3.7 1,135.3

commonJob 16 13,506.1 13,627.6 12,932.8 13,657.7 13,847.8 14,905.9 2.6 5.9 4.2 1,402.5
24 18,835.1 18,537.7 20,593.0 26,190.4 17,578.4 20,346.4 7.7 9.7 9.6 1,519.0
32 24,104.4 37,576.2 26,927.1 26,379.2 21,281.3 25,619.6 9.7 10.5 9.2 1,524.9

TABLE 9
Running times (seconds) of heuristics for distributed web crawling datasets

Original heuristics Proposed heuristics
Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+

4 73,814.2 75,260.0 78,577.7 1.1×105 90,773.2 77,284.4 4.1 5.3 7.7 3,474.3
8 1.2×105 88,850.7 79,415.0 1.4×105 1.1×105 1.2×105 9.5 11.5 13.6 4,386.9

ClueWeb-B 16 2.3×105 1.4×105 1.9×105 2.8×105 1.3×105 2.4×105 18.2 17.6 22.5 5,144.0
24 2.9×105 2.6×105 2.9×105 3.7×105 1.8×105 2.9×105 36.5 42.4 28.2 4,059.6
32 4.1×105 3.2×105 3.6×105 4.3×105 2.2×105 4.1×105 47.3 41.6 46.0 4,169.8

4 6.7×105 8.1×105 7.3×105 9.3×105 6.5×105 6.9×105 19.6 19.4 20.8 12,573.3
8 8.4×105 1.1×106 1.0×106 1.4×106 7.9×105 8.5×105 39.2 38.8 51.1 11,473.6

ClueWeb-A 16 1.9×106 1.7×106 1.8×106 2.8×106 1.2×106 2.0×106 60.5 84.2 89.7 12,936.7
24 2.7×106 2.6×106 3.0×106 2.9×106 1.8×106 2.7×106 106.2 112.3 141.0 14,059.2
32 3.3×106 2.9×106 3.2×106 3.5×106 2.8×106 3.4×106 183.9 174.5 193.1 14,231.3

TABLE 10
Running times (seconds) of heuristics for parallel DVR datasets

Original heuristics Proposed heuristics
Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+

4 15.3 15.1 17.8 21.7 18.9 25.6 0.0 0.7 2.5 10.3
8 26.0 23.9 34.0 43.1 29.9 40.7 0.1 0.5 2.1 14.7

blunt 16 69.2 59.7 100.8 107.8 132.4 90.7 0.2 0.4 1.8 21.7
24 208.5 228.7 163.1 174.5 164.8 234.4 0.3 0.8 4.3 26.2
32 259.2 287.1 334.6 246.1 231.6 291.8 0.3 0.8 3.8 32.9

4 56.3 39.1 47.0 188.5 85.8 70.2 0.1 1.4 5.0 14.0
8 88.0 124.3 93.5 113.0 186.7 114.7 0.2 0.8 3.9 26.8

comb 16 159.5 191.2 279.7 236.9 256.7 200.6 0.3 1.0 3.8 41.4
24 314.0 289.2 356.3 466.2 350.3 360.7 0.6 1.7 6.7 47.3
32 437.3 445.9 446.2 457.5 436.5 475.7 0.6 1.5 6.8 38.9

ment of ClueWeb-B and all K-way assignments of
ClueWeb-A. ClueWeb-A has an extremely large task
whose weight is greater than the sum of the weights
of all other tasks. The assignment of such a large
task to its favorite processor avoids the need for a
second MaxMin-based assignment in future iterations.
A similar reasoning holds for the 32-way assignment
of ClueWeb-B. In fact, MaxMin is also expected to
find a “good” solution in such assignment instances.
As seen in Tables 3–6, these are the only assignment
instances where MaxMin was able to find a solution
with the same makespan as MaxMin+.
MaxMin+ versus RASA: Although RASA finds

slightly better solutions than MaxMin, MaxMin+ finds
significantly better solutions than RASA in all as-
signment instances, except for the 32-way assign-
ment of ClueWeb-B and the assignment instances of
ClueWeb-A, where all three heuristics find solutions

with the same makespan. On average, MaxMin+ at-
tains average load imbalance values of 177.74% and
0.62% compared to 319.40% and 173.46% of RASA,
for skewed and non-skewed datasets, respectively.
These results validate the success of the proposed
adaptive selection policy of MaxMin+ over that of
RASA. MaxMin+ is several orders of magnitude faster
than RASA in all assignment instances. On average,
MaxMin+ runs 5953- and 333-times faster than RASA
for skewed and non-skewed datasets, respectively.
Suff+ versus Suff: Out of 95 assignment in-

stances, Suff+ finds better solutions than Suff in
83 instances, whereas Suff finds better solutions
than Suff+ in only six instances. In the remain-
ing six assignment instances (five assignment in-
stances of ClueWeb-A and the 32-way assignment
of ClueWeb-B), both Suff and Suff+ find solutions
with the same makespan. As seen in Table 7, in terms
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TABLE 11
Running times (seconds) of heuristics for parallel SpMxV datasets

Original heuristics Proposed heuristics
Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+

4 1,044.0 1,245.0 1,978.2 1,065.2 1,505.8 1,176.6 0.6 20.6 74.8 133.1
8 1,809.8 1,835.4 2,295.3 2,343.4 2,008.1 2,134.5 1.1 15.9 61.9 325.8

barrier2-1 16 3,356.1 3,138.0 3,961.0 4,697.8 3,254.9 3,636.5 2.2 20.4 62.2 282.7
24 4,534.0 4,893.5 5,511.7 5,959.1 4,099.6 5,150.5 3.7 15.1 73.9 620.3
32 5,078.4 5,810.1 6,360.4 6,551.5 6,345.0 5,418.7 3.5 14.1 83.4 343.9

4 15,081.9 16,432.9 16,562.0 26,088.5 25,826.6 16,413.0 2.3 65.9 166.8 1,333.3
8 25,924.4 23,470.0 24,928.3 34,444.6 34,882.4 28,029.7 4.7 15.9 40.0 2,110.1

language 16 39,780.2 34,559.5 47,030.2 71,420.6 51,280.7 42,259.3 11.5 12.6 12.0 2,490.6
24 74,398.5 76,276.2 75,045.1 90,750.8 70,951.8 77,000.6 22.4 32.3 50.2 2,624.6
32 71,323.0 67,528.2 71,835.9 77,366.0 77,218.7 73,990.1 18.2 21.9 15.9 2,685.3

4 9.1 9.8 11.0 13.4 13.2 15.7 0.0 0.4 1.5 6.7
8 14.0 13.6 49.8 22.0 18.9 22.6 0.1 0.3 1.2 8.7

olafu 16 35.8 40.7 38.5 58.1 54.3 54.9 0.2 0.3 1.0 19.3
24 81.9 129.2 97.7 106.2 84.4 101.7 0.3 0.4 2.4 20.1
32 180.4 156.1 136.8 143.1 131.6 196.1 0.3 0.5 2.1 15.9

4 6,987.9 8,185.9 7,401.1 10,191.5 7,977.8 7,234.2 1.2 200.8 684.1 247.5
8 8,309.2 10,809.7 11,219.6 16,430.8 10,947.9 8,688.3 2.0 129.2 556.3 381.1

Lin 16 15,901.8 24,876.3 20,575.5 28,687.5 16,427.6 16,374.7 6.0 117.8 784.2 478.9
24 23,305.1 23,062.5 25,086.5 31,325.5 23,233.7 23,847.7 8.5 109.9 794.6 551.1
32 28,725.5 29,544.6 31,139.2 45,157.7 29,805.8 29,184.5 10.5 119.4 766.7 469.5

TABLE 12
Normalized running time averages over all datasets

Original heuristics Proposed heuristics
Dataset K MM MxM Suff RC RASA GA MM+ MxM+ Suff+ GA+

4 12,813.9 14,307.1 13,863.1 17,964.0 14,379.7 13,294.8 1.0 16.7 46.8 481.9
8 8,357.6 9,069.9 8,878.2 12,122.8 8,653.1 8,711.3 1.0 4.5 14.5 354.7

Skewed 16 10,134.9 8,614.4 9,924.2 14,029.0 7,595.1 10,397.5 1.0 3.0 6.9 263.6
24 7,604.2 7,363.6 8,610.4 8,867.2 5,623.8 7,745.3 1.0 1.9 5.4 142.1
32 6,643.6 6,186.7 6,981.4 7,304.4 5,482.1 6,755.3 1.0 1.7 5.3 112.8

4 2,274.3 2,556.8 2,501.8 2,988.4 2,488.6 2,435.1 1.0 38.0 130.5 161.8
8 1,555.4 1,902.1 1,858.3 2,553.1 1,907.3 1,703.4 1.0 13.1 59.1 149.0

Non-skewed 16 1,449.6 1,577.0 1,766.1 2,168.1 1,539.7 1,565.2 1.0 5.9 29.5 116.6
24 1,187.6 1,558.1 1,625.2 1,620.5 1,171.9 1,250.5 1.0 4.1 21.5 63.9
32 1,241.6 1,618.3 1,639.7 1,814.9 1,343.0 1,298.0 1.0 3.8 20.4 57.4

of average load balancing quality, Suff+ shows com-
parable performance with Suff for skewed datasets,
whereas Suff+ performs better than Suff for non-
skewed datasets. On average, Suff+ attains average
load imbalance values of 178.31% and 0.51% com-
pared to 178.12% and 1.37% of Suff, for skewed and
non-skewed datasets, respectively. As seen in Table 12,
Suff+ is a few orders of magnitude faster than Suff
in all assignment instances. On average, Suff+ runs
6078- and 194-times faster than Suff for skewed and
non-skewed datasets, respectively.

GA+ versus GA: As mentioned in Section 3.4, GA+
finds exactly the same solutions as GA. However,
GA+ is significantly faster than GA in all assignment
instances. On average, GA+ is 19-, 16-, 23-, 22-, and
38-times faster than GA in 4-, 8-, 16-, 24-, and 32-way
assignments, respectively. For the 16-way assignment
of the largest dataset ClueWeb-A, GA finds a solution
in about 23 days while GA+ finds the same solution
in less than four hours, i.e., GA+ runs about 154 times
faster than GA for that assignment instance.

4.2.2 General Comparison
For general performance comparison, we will only
consider MinMin+, MaxMin+, Suff+, GA+, and RC
since the improved versions perform better than their
traditional counterparts and MaxMin+ performs sig-
nificantly better than RASA.

For the six skewed datasets, both of the proposed
hybrid algorithms, MaxMin+ and Suff+, find consid-
erably better solutions than MinMin+, in terms of load
balancing quality. Out of 30 assignment instances of
skewed datasets, RC, MaxMin+, and Suff+ find the
best solutions in 14, 11, and 11 assignment instances,
respectively. As seen in Table 7, MaxMin+ and Suff+
respectively attain load imbalance values of 177.74%
and 178.31% compared to 177.26% of RC, on average.
Hence, MaxMin+ and Suff+ display comparable per-
formance with RC in terms of load balancing quality.
However, both MaxMin+ and Suff+ are significantly
faster than RC in all of these 30 assignment instances.
On average, MaxMin+ and Suff+ respectively run
2657- and 1588-times faster than RC. Hence, the use
of RC in large datasets is not feasible.

For skewed datasets, we recommend the use of
MaxMin+. Because, as seen in Tables 7 and 12,
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TABLE 13
Number of MaxMin-based assignments performed by MaxMin+

Social network Distributed web crawling Parallel DVR Parallel SpMxV Parallel SpMxV
Dataset K m Dataset K m Dataset K m Dataset K m Dataset K m

coauthorship (N=725,344) ClueWeb-B (N=799,115) blunt (N=20,611) barrier2-1 (N=113,076) olafu (N=16,146)
4 13,528 4 257 4 1,840 4 8,233 4 1,416
8 3,631 8 289 8 696 8 2,987 8 535

16 1,190 16 9 16 282 16 1,198 16 227
24 686 24 2 24 172 24 668 24 138
32 444 32 1 32 128 32 496 32 103

commonJob (N=241,233) ClueWeb-A (N=2,483,726) comb (N=32,238) language (N=399,130) Lin (N=256,000)
4 441 4 1 4 2,466 4 8,986 4 23,376
8 93 8 1 8 912 8 1,093 8 8,882

16 23 16 1 16 370 16 114 16 3,666
24 11 24 1 24 226 24 137 24 2,246
32 9 32 1 32 165 32 11 32 1,634

MaxMin+ is considerably faster than Suff+ and yields
comparable performance in terms of load balancing
quality.

For the 13 non-skewed datasets, GA+ finds the best
solutions in 51 assignment instances out of 65 assign-
ment instances in terms of load balancing quality. GA+
performs better than the other heuristics in assign-
ment instances where MinMin+ already shows good
performance (e.g., SpMxV and DVR datasets). This
can be attributed to the fact that GA+ improves the ini-
tial assignment provided by MinMin+. Furthermore,
GA+ is approximately two orders of magnitude slower
than MinMin+. Hence, to analyze the performance of
MinMin+, we exclude GA+ in the statistics given in the
following paragraph to show the relative performance
of the algorithms in finding the best assignments.

Out of 65 assignment instances of the non-skewed
datasets, RC, MinMin+, MaxMin+, and Suff+ find the
best assignments in 17, 17, 18, and 17 assignment
instances, respectively. As seen in Table 7, MinMin+,
MaxMin+ and Suff+ respectively attain load imbal-
ance values of 0.62%, 0.62%, and 0.51% compared to
0.61% of RC, on average. Hence, MinMin+, MaxMin+,
and Suff+ display comparable load-balancing perfor-
mance with RC for non-skewed datasets. However, for
these 65 assignment instances, MinMin+, MaxMin+,
and Suff+ respectively run 2229-, 499-, and 236-times
faster than RC, on average. Hence, the use of RC is not
feasible also for large non-skewed datasets. For these
65 assignment instances, MinMin+ runs 13- and 52-
times faster than MaxMin+ and Suff+, respectively,
on average. We observe a trade-off between the solu-
tion quality and running times of MinMin+ and GA+.
GA+ displays better load balancing performance than
MinMin+, whereas MinMin+ is significantly faster
(110-times, on average).

For non-skewed datasets, we recommend the use
of MinMin+, since MinMin+ runs significantly faster
than both MaxMin+ and Suff+ while achieving com-
parable load balancing performance. The use of GA+
should be considered only if the significantly higher
running time of GA+ can be amortized by the im-
proved load balancing on the target application.

5 CONCLUSION
We presented certain performance improvements over
the popular independent task assignment heuris-
tics MinMin, MaxMin, and Suff. In particular, we
proposed the MinMin+ heuristic which improves
the worst-case runtime complexity of MinMin from
O(KN2) to O(KN logN) in assigning N independent
tasks to K processors. Moreover, we proposed the
MaxMin+ and Suff+ heuristics, which are hybrid
versions of MaxMin and Suff, obtained by com-
bining the latter heuristics with MinMin. We evalu-
ated the performance of all heuristics over a large
number of real-life datasets. The experiments indicate
that each of our heuristics runs considerably faster
than their traditional counterparts, MinMin+ being
the fastest. In terms of the solution quality, both
MaxMin+ and Suff+ are found to perform consider-
ably better than MinMin+ for skewed datasets while
MinMin+ is found to perform comparable for non-
skewed datasets. Considering the tradeoffs between
the solution quality and the running times of the pro-
posed assignment algorithms, we recommend the use
of MinMin+ for non-skewed datasets and recommend
MaxMin+ for skewed datasets.
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