2,340 research outputs found

    The Anti-hepatitis B Virus Activity of Boehmeria nivea Extract in HBV-viremia SCID Mice

    Get PDF
    Boehmeria nivea extract (BNE) is widely used in southern Taiwan as a folk medicine for hepato-protection and hepatitis treatment. In previous studies, we demonstrated that BNE could reduce the supernatant hepatitis B virus (HBV) DNA in HBV-producing HepG2 2.2.15 cells. In the present study, we established an animal model of HBV viremia and used it to validate the efficacy of BNE in vivo. In this animal model, serum HBV DNA and HBsAg were elevated in accordance with tumor growth. To evaluate the anti-HBV activity of BNE, HBV-viremia mice were built up after one subcutaneous inoculation of HepG2 2.2.15 tumor cells in severe combined immunodeficiency mice over 13 days. The levels of serum HBV DNA were elevated around 105–106 copies per milliliter. Both oral and intraperitoneal administration of BNE were effective at inhibiting the production of HBsAg and HBV DNA, whereas tumor growth was not affected by all test articles. Intraperitoneal administration of BNE appeared to have greater potential to inhibit serum HBV DNA levels compared with oral administration under the same dosage. Notably, reduced natural killer cell activity was also observed after high dosage of BNE administration, and this correlated with reduced serum HBV DNA. In conclusion, BNE exhibited potential anti-HBV activity in an animal model of HBV viremia

    TNF-α Mediates Eosinophil Cationic Protein-induced Apoptosis in BEAS-2B Cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eosinophilic granulocytes are important for the human immune system. Many cationic proteins with cytotoxic activities, such as eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN), are released from activated eosinophils. ECP, with low RNase activity, is widely used as a biomarker for asthma. ECP inhibits cell viability and induces apoptosis to cells. However, the specific pathway underlying the mechanisms of ECP-induced cytotoxicity remains unclear. This study investigated ECP-induced apoptosis in bronchial epithelial BEAS-2B cells and elucidated the specific pathway during apoptosis.</p> <p>Results</p> <p>To address the mechanisms involved in ECP-induced apoptosis in human BEAS-2B cells, investigation was carried out using chromatin condensation, cleavage of poly (ADP-ribose) polymerase (PARP), sub-G1 distribution in cell cycle, annexin V labeling, and general or specific caspase inhibitors. Caspase-8-dependent apoptosis was demonstrated by cleavage of caspase-8 after recombinant ECP treatment, accompanied with elevated level of tumor necrosis factor alpha (TNF-α). Moreover, ECP-induced apoptosis was effectively inhibited in the presence of neutralizing anti-TNF-α antibody.</p> <p>Conclusion</p> <p>In conclusion, our results have demonstrated that ECP increased TNF-α production in BEAS-2B cells and triggered apoptosis by caspase-8 activation through mitochondria-independent pathway.</p

    Formation polarity dependent improved resistive switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nano-dots

    Get PDF
    Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future

    Indoor CO2 monitoring in a surgical intensive care unit under visitation restrictions during the COVID-19 pandemic

    Get PDF
    BackgroundIndoor CO2 concentration is an important metric of indoor air quality (IAQ). The dynamic temporal pattern of CO2 levels in intensive care units (ICUs), where healthcare providers experience high cognitive load and occupant numbers are frequently changing, has not been comprehensively characterized.ObjectiveWe attempted to describe the dynamic change in CO2 levels in the ICU using an Internet of Things-based (IoT-based) monitoring system. Specifically, given that the COVID-19 pandemic makes hospital visitation restrictions necessary worldwide, this study aimed to appraise the impact of visitation restrictions on CO2 levels in the ICU.MethodsSince February 2020, an IoT-based intelligent indoor environment monitoring system has been implemented in a 24-bed university hospital ICU, which is symmetrically divided into areas A and B. One sensor was placed at the workstation of each area for continuous monitoring. The data of CO2 and other pollutants (e.g., PM2.5) measured under standard and restricted visitation policies during the COVID-19 pandemic were retrieved for analysis. Additionally, the CO2 levels were compared between workdays and non-working days and between areas A and B.ResultsThe median CO2 level (interquartile range [IQR]) was 616 (524–682) ppm, and only 979 (0.34%) data points obtained in area A during standard visitation were ≥ 1,000 ppm. The CO2 concentrations were significantly lower during restricted visitation (median [IQR]: 576 [556–596] ppm) than during standard visitation (628 [602–663] ppm; p &lt; 0.001). The PM2.5 concentrations were significantly lower during restricted visitation (median [IQR]: 1 [0–1] μg/m3) than during standard visitation (2 [1–3] μg/m3; p &lt; 0.001). The daily CO2 and PM2.5 levels were relatively low at night and elevated as the occupant number increased during clinical handover and visitation. The CO2 concentrations were significantly higher in area A (median [IQR]: 681 [653–712] ppm) than in area B (524 [504–547] ppm; p &lt; 0.001). The CO2 concentrations were significantly lower on non-working days (median [IQR]: 606 [587–671] ppm) than on workdays (583 [573–600] ppm; p &lt; 0.001).ConclusionOur study suggests that visitation restrictions during the COVID-19 pandemic may affect CO2 levels in the ICU. Implantation of the IoT-based IAQ sensing network system may facilitate the monitoring of indoor CO2 levels

    Antifouling pseudo-zwitterionic poly(vinylidene fluoride) membranes with efficient mixed-charge surface grafting via glow dielectric barrier discharge plasma-induced copolymerization

    Get PDF
    This work reports on the glow dielectric barrier discharge (GDBD) plasma-induced surface grafting of poly(vinylidene fluoride) (PVDF) membranes with mixed-charge copolymers of [2-(methacryloyloxy)ethyl] trimethylammonium (TMA) and sulfopropyl methacrylate (SA). The aim is to investigate the antifouling properties and the hemocompatibility of this system. We first characterize the physico-chemical properties of the membranes. With SA alone in the coating solution, efficient grafting cannot be achieved as monomer is blown away during grafting. Membranes grafted with a mixture of SA and TMA, or TMA alone do not meet this problem and grafting density ranged between 0.29 and 0.41 mg/cm2. Bovine-serum-albumin and lysozyme adsorption tests (70% reduction) and Escherichia coli attachment test (annihilation of adhesion) unveil that pseudo-zwitterionic PVDF membranes are very efficient to reduce biofouling in static condition. Different fouling resistance behaviors are observed in dynamic conditions. Permeability of virgin membranes progressively decreases over the cycles, arising from a gradual pore blockage and irreversible fouling. All potential adsorption sites of pseudo-zwitterionic membrane and membrane with positive charge-bias are fouled after the first cycle, and flux recovery is maximal in the following cycles. This behavior is ascribed to the lack of homogeneity of the surface grafting. Finally, pseudo-zwitterionic membranes are hemocompatible (resistance to blood cells, low hemolysis activity). Provided a better tuning of surface uniformity, the method and system presented in this work are a promising approach to the new generation of antifouling mixed-charge membranes for water treatment or blood contacting devices
    corecore