237 research outputs found
Corticotropin-releasing hormone mediates the response to cold stress in the neonatal rat without compensatory enhancement of the peptide's gene expression.
A variety of stressors activate the hypothalamic-pituitary-adrenal axis, with secretion and compensatory enhanced synthesis of hypothalamic corticotropin-releasing hormone (CRH). Whether CRH is a major effector in the stress response of the neonatal rat and whether the peptide's gene expression is subsequently up-regulated are not fully understood. We studied the effect of cold-separation stress on plasma corticosterone (CORT) levels and CRH messenger RNA (CRH-mRNA) abundance in the paraventricular nucleus. Rats (4-16 days old) were subjected to maximal tolerated cold-separation. CORT and CRH-mRNA abundance were measured before and at several time points after stress. Cold-separation stress resulted in a significant plasma CORT increase in all age groups studied. This was abolished by the administration of an antiserum to CRH on both postnatal days 6 and 9. CRH-mRNA increased in rats aged 9 days or older, but not in 6-day-old rats, by 4 h after stress. These results suggest the presence of robust CRH-mediated adrenal responses to cold-separation stress in neonatal rats. Before postnatal day 9, however, the compensatory increase in CRH-mRNA abundance is minimal
Recommended from our members
Effects of a specific glucocorticoid receptor antagonist on corticotropin releasing hormone gene expression in the paraventricular nucleus of the neonatal rat.
Mechanisms controlling the synthesis of corticotropin releasing hormone (CRH) in neonatal rats, and the ontogeny of glucocorticoid (GC) feedback control of hypothalamic CRH remain unknown. Specific issues are whether stress induces up-regulation of CRH gene expression during the first postnatal week, and the role of GC feedback, at the hypothalamic level, in the stress-hyporesponsive period. We studied the ontogeny of the negative feedback regulation of CRH gene expression by GC in the paraventricular nucleus (PVN). We implanted chronic cannulae containing a GC-receptor antagonist, RU 38486, in rats on postnatal days 3 to 13. Three days later, animals were sacrificed, and brains were analyzed for CRH-messenger RNA (CRH-mRNA), using semi-quantitative in situ hybridization. Animals implanted with cholesterol-containing cannulae served to evaluate the stressful effect of implantation on CRH-mRNA abundance. The presence of GC receptor messenger RNA (GR-mRNA) in the PVN of neonatal rats was also determined. RU 38486 did not increase CRH-mRNA abundance during the first postnatal week, despite the presence of GR-mRNA in the PVN. Chronic-implantation stress also failed to increase CRH synthesis. CRH gene expression in the PVN was enhanced in infant rats implanted with RU-38486 on postnatal day 9 or later. Cholesterol implantation on days 9, 10 (but not later), resulted in increased PVN-CRH-mRNA. Thus, CRH-mRNA is up-regulated by chronic blockade of GC receptors only subsequent to the eighth postnatal day. Furthermore, such blockade does not affect the response of CRH-mRNA to chronic stress in the neonatal rat
Glucocorticoid receptor mRNA ontogeny in the fetal and postnatal rat forebrain.
Glucocorticoid receptor (GR) ontogeny and distribution in postnatal rat brain have been demonstrated, but onset and distribution of GR gene expression during fetal life has not been reported. This study focuses on the distribution of GR-mRNA in the fetal and postnatal rat forebrain, with emphasis on hypothalamic and limbic structures. Time pregnant rats were decapitated at 8:30-9:30 AM on Gestational Days 14 (F14), F16, F17, F18, and F19. Postnatally, rats were sacrificed on Days 1, 4, 6, 10, and 16. Cryostat sections were subjected to in situ hybridization, using a cRNA probe directed to the GR-mRNA. GR-mRNA was detectible in the hippocamposeptal formation as early as F14. By F16, GR gene expression was evident in the hypothalamic paraventricular nucleus (PVN) as well. During late gestation (F17-F19), GR-mRNA was localized also in the thalamus, hippocampus, amygdala, and discrete cortical regions. Postnatally, GR-mRNA abundance was high in the PVN, CA1/CA2 hippocampal field, piriform cortex and dorsal endopiriform nucleus, specific amygdaloid nuclei, and the suprachiasmatic nucleus. In PVN, GR-mRNA was present prior to the onset of CRH gene expression (F17), which may suggest a role for GR in neuronal differentiation
Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the rat limbic system.
The ontogeny of corticotropin-releasing hormone (CRH) receptor messenger ribonucleic acid (mRNA) in rat brain, using in situ hybridization, is the focus of this study. The developmental profile of CRH receptor using binding assays and receptor autoradiography has been reported, but may be confounded by the presence of a binding protein. The recent cloning of the rat CRH receptor gene has permitted the use of in situ hybridization histochemistry to map the distribution of cells expressing CRH receptor mRNA in the developing brain. We used antisense 35S-labeled oligodeoxynucleotide probes for the two reported splice-variants of the CRH receptor mRNA, which yielded essentially identical localization patterns. CRH receptor mRNA was clearly detectable in infant brain starting on the second postnatal day. Signal in hippocampal CA1, CA2 and CA3a increased to 300-600% of adult levels by postnatal day 6 with a subsequent gradual decline. In the amygdala, in contrast, CRH receptor mRNA abundance increased steadily between the second and the ninth postnatal days, to levels twice higher than those in the adult. In the cortex, CRH receptor mRNA levels were high on postnatal day 2 and decreased to adult levels by day 12. Transient signal over the hypothalamic paraventricular nucleus, observed on the second postnatal day, was not evident at older ages. These results demonstrate robust synthesis of CRH receptor as early as on the second postnatal day and unique region-specific developmental profiles for CRH receptor gene expression
Effects of maternal and sibling deprivation on basal and stress induced hypothalamic-pituitary-adrenal components in the infant rat.
Prolonged maternal deprivation during early infancy increases basal- and stress-induced corticosterone (CORT) levels, but the underlying mechanism is not clear. In general, stressors activate the hypothalamic-pituitary-adrenal (HPA) axis, with secretion and compensatory synthesis of hypothalamic cortcotropin-releasing hormone (CRH). In the infant rat, we have demonstrated that maximally tolerated acute cold stress induced a robust elevation of plasma CORT throughout the first 2 postnatal weeks. However CRH messenger RNA (CRH-mRNA) abundance 4 h subsequent to cold stress was enhanced only in rats aged 9 days or older. This suggests a developmental regulation of the CRH component of the HPA-response to this stressor. The present study examined whether increased basal and cold stress-induced CORT levels after 24 h of maternal deprivation were due to enhanced CRH-mRNA abundance in the hypothalamic paraventricular nucleus (PVN). CRH-mRNA abundance, and basal- and cold-induced plasma CORT levels were measured in maternally deprived 6 and 9-day-old pups compared to non-deprived controls. Maternal deprivation increased basal and cold-induced CORT levels on both 6 and 9-day-old rats. CRH-mRNA abundance in the PVN of deprived rats did not differ from that in non-deprived rats. Our results indicate that the enhanced basal and stress-induced plasma CORT observed after 24 h maternal deprivation is not due to increased CRH-mRNA abundance in the PVN
Using DMA to Simultaneously Acquire Young's Relaxation Modulus and Time-dependent Poisson's Ratio of a Viscoelastic Material
AbstractA method to obtain the Young's relaxation modulus and time-dependent Poisson's ratio simultaneously by using DMA is developed with the assumption of constant bulk modulus instead of constant Poisson's ratio. The constant bulk modulus is then calculated by either instantaneous response or the equilibrium response of the time-dependent Poisson's ratio. The modulating Young's moduli and characteristic times that measured by DMA are corrected analytically by using the developed formulas. The time-dependent Poisson's ratio is then obtained from the corrected modulating Young's moduli and the constant bulk modulus. As an application example, the method is applied to the DMA measurement of an epoxy molding compound (EMC). Although the correction to Young's relaxation modulus is very small, the viscoelastic Poisson's ratio varies significantly over time from 0.4 to 0.496, and can’t be assumed as a constant
Kidney outcomes with SGLT2is for type 2 diabetes patients: does background treatment with metformin or RASis matter?
IntroductionThere is a lack of real-world evidence regarding the impact of concomitant metformin and renin-angiotensin system inhibitors (RASis) on sodium-glucose cotransporter-2 inhibitor (SGLT2i)-associated kidney outcomes. This study was aimed to investigate whether SGLT2i-associated kidney outcomes were modified by the concomitant use of metformin or RASis in patients with type 2 diabetes.MethodsSGLT2i users were identified from three electronic health record databases during May 2016 and December 2017 and categorized into those with and without concomitant use of metformin or RASis. Propensity score matching was performed to minimize baseline differences between groups. Study outcomes were mean estimated glomerular filtration rate (eGFR) change and time to 30%, 40%, and 50% eGFR reductions. A meta-analysis was performed to combine the estimates across databases.ResultsAfter matching, there were 6,625 and 3,260 SGLT2i users with and without metformin, and 6,654 and 2,746 SGLT2i users with and without RASis, respectively. The eGFR dip was similar in SGLT2i users with and without metformin therapy, but was greater in SGLT2i users with RASis compared to those without RASis. Neither metformin nor RASi use had a significant effect on SGLT2i-associated eGFR reductions, as evidenced by the hazard ratios (95% CIs) of 30% eGFR reductions for SGLT2is with versus without metformin/RASis, namely 1.02 (0.87–1.20)/1.09 (0.92–1.31). Such findings were also observed in the outcomes of 40% and 50% eGFR reductions.ConclusionUsing metformin or RASis did not modify SGLT2i-associated kidney outcomes in type 2 diabetes
ProFITS of maize: a database of protein families involved in the transduction of signalling in the maize genome
<p>Abstract</p> <p>Background</p> <p>Maize (<it>Zea mays </it>ssp. <it>mays </it>L.) is an important model for plant basic and applied research. In 2009, the B73 maize genome sequencing made a great step forward, using clone by clone strategy; however, functional annotation and gene classification of the maize genome are still limited. Thus, a well-annotated datasets and informative database will be important for further research discoveries. Signal transduction is a fundamental biological process in living cells, and many protein families participate in this process in sensing, amplifying and responding to various extracellular or internal stimuli. Therefore, it is a good starting point to integrate information on the maize functional genes involved in signal transduction.</p> <p>Results</p> <p>Here we introduce a comprehensive database 'ProFITS' (Protein Families Involved in the Transduction of Signalling), which endeavours to identify and classify protein kinases/phosphatases, transcription factors and ubiquitin-proteasome-system related genes in the B73 maize genome. Users can explore gene models, corresponding transcripts and FLcDNAs using the three abovementioned protein hierarchical categories, and visualize them using an AJAX-based genome browser (JBrowse) or Generic Genome Browser (GBrowse). Functional annotations such as GO annotation, protein signatures, protein best-hits in the <it>Arabidopsis </it>and rice genome are provided. In addition, pre-calculated transcription factor binding sites of each gene are generated and mutant information is incorporated into ProFITS. In short, ProFITS provides a user-friendly web interface for studies in signal transduction process in maize.</p> <p>Conclusion</p> <p>ProFITS, which utilizes both the B73 maize genome and full length cDNA (FLcDNA) datasets, provides users a comprehensive platform of maize annotation with specific focus on the categorization of families involved in the signal transduction process. ProFITS is designed as a user-friendly web interface and it is valuable for experimental researchers. It is freely available now to all users at <url>http://bioinfo.cau.edu.cn/ProFITS</url>.</p
Fluid dynamic lateral slicing of high tensile strength carbon nanotubes
Lateral slicing of micron length carbon nanotubes (CNTs) is effective on laser irradiation of the materials suspended within dynamic liquid thin films in a microfluidic vortex fluidic device (VFD). The method produces sliced CNTs with minimal defects in the absence of any chemical stabilizers, having broad length distributions centred at ca 190, 160 nm and 171 nm for single, double and multi walled CNTs respectively, as established using atomic force microscopy and supported by small angle neutron scattering solution data. Molecular dynamics simulations on a bent single walled carbon nanotube (SWCNT) with a radius of curvature of order 10 nm results in tearing across the tube upon heating, highlighting the role of shear forces which bend the tube forming strained bonds which are ruptured by the laser irradiation. CNT slicing occurs with the VFD operating in both the confined mode for a finite volume of liquid and continuous flow for scalability purposes
Metabolome Based Reaction Graphs of M. tuberculosis and M. leprae: A Comparative Network Analysis
BACKGROUND: Several types of networks, such as transcriptional, metabolic or protein-protein interaction networks of various organisms have been constructed, that have provided a variety of insights into metabolism and regulation. Here, we seek to exploit the reaction-based networks of three organisms for comparative genomics. We use concepts from spectral graph theory to systematically determine how differences in basic metabolism of organisms are reflected at the systems level and in the overall topological structures of their metabolic networks. METHODOLOGY/PRINCIPAL FINDINGS: Metabolome-based reaction networks of Mycobacterium tuberculosis, Mycobacterium leprae and Escherichia coli have been constructed based on the KEGG LIGAND database, followed by graph spectral analysis of the network to identify hubs as well as the sub-clustering of reactions. The shortest and alternate paths in the reaction networks have also been examined. Sub-cluster profiling demonstrates that reactions of the mycolic acid pathway in mycobacteria form a tightly connected sub-cluster. Identification of hubs reveals reactions involving glutamate to be central to mycobacterial metabolism, and pyruvate to be at the centre of the E. coli metabolome. The analysis of shortest paths between reactions has revealed several paths that are shorter than well established pathways. CONCLUSIONS: We conclude that severe downsizing of the leprae genome has not significantly altered the global structure of its reaction network but has reduced the total number of alternate paths between its reactions while keeping the shortest paths between them intact. The hubs in the mycobacterial networks that are absent in the human metabolome can be explored as potential drug targets. This work demonstrates the usefulness of constructing metabolome based networks of organisms and the feasibility of their analyses through graph spectral methods. The insights obtained from such studies provide a broad overview of the similarities and differences between organisms, taking comparative genomics studies to a higher dimension
- …