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Abstract 

A method to obtain the Young's relaxation modulus and time-dependent Poisson's ratio simultaneously by using DMA is 
developed with the assumption of constant bulk modulus instead of constant Poisson's ratio. The constant bulk modulus is then 
calculated by either instantaneous response or the equilibrium response of the time-dependent Poisson's ratio. The modulating 
Young's moduli and characteristic times that measured by DMA are corrected analytically by using the developed formulas. The 
time-dependent Poisson's ratio is then obtained from the corrected modulating Young's moduli and the constant bulk modulus. As 
an application example, the method is applied to the DMA measurement of an epoxy molding compound (EMC). Although the 
correction to Young's relaxation modulus is very small, the viscoelastic Poisson's ratio varies significantly over time from 0.4 to 
0.496, and can’t be assumed as a constant. 
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1. Introduction 

Dynamic mechanical analyzer (DMA) is a powerful instrument that is widely used in the electronic package to 
measure the viscoelasticity or shrinkage behaviors of molding compound or underfill [1-7]. Typically, a DMA 
instrument has various modes of operation, including shear mode, bending mode (dual/single cantilever, 3-point 
bending), compression mode, and tension mode. The first mode is used to measure the viscoelastic shear modulus, 
and the others are used to measure the viscoelastic Young's modulus [8]. 

For bending modes, the Young's complex modulus is calculated by using [8] 
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where Ks( ) is the measured stiffness, fc is a constant that depends on the bending mode, h is the sample thickness, L 
is the sample half length, I is the sample moment of inertia, and  is the Poisson's ratio. It is noted that the Young's 
complex modulus is not only depending on the geometric parameters, but also on the Poisson's ratio. The Poisson's 
ratio was frequently assumed to be a constant in the literatures [9-14]. However, the constant Poisson's ratio implies 
the ratio of the bulk relaxation modulus, K(t), and the shear relaxation modulus, G(t), is a constant; that is, 
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)21(3
)1(2)( tGtK  [15] . This relation also implies that both bulk and shear relaxation moduli share the same 

relaxation times. However, experimental data showed that for most materials the relaxation times of bulk relaxation 
moduli are much higher than those of shear relaxation moduli [16-18]. Therefore, the assumption of constant 
Poisson's ratio is inappropriate. Instead, the constant bulk modulus is a more applicable assumption [15,20-22]. 

In this work, correction to Eq. (1) is derived to incorporate the effect of time-dependent Poisson's ratio. From this 
correction, the Young's relaxation modulus and time-dependent Poisson's ratio can be obtained simultaneously from 
a single DMA test. Section 1 gives the description of the time-dependent effect of Poisson's ratio and the assumption 
adopted in DMA measurement. In Section 2, the correction of Young's complex modulus is first derived, and the 
time-dependent Poisson's ratio is then calculated from the Young's relaxation modulus. The implementation of this 
correction is carried out in Section 3 to DMA measurements of a molding compound. The conclusion is given in 
Section 4. 

2. The corrections to Young's relaxation modulus and time-dependent Poisson's ratio 

Two parameters in viscoelastic model are frequently used to represent the elastic response: one is the 
instantaneous parameter, and the other is the permanent parameter. The instantaneous parameter is usually viewed 
as the instantaneous elastic response of a viscoelastic fluid, while the permanent parameter as the equilibrium elastic 
response of a viscoelastic solid. The instantaneous parameters of Young's relaxation modulus and time-dependent 
Poisson's ratio are denoted by 
 )0(0 EE ,   )0(0 ; (2) 

while the permanent parameters of Young's relaxation modulus and time-dependent Poisson's ratio are given by 
 )(EE ,   )( . (3) 

2.1. Assigning 0 as the elastic Poisson's ratio 

Instead of assuming the constant Poisson's ratio in Eq. (1), we use the constant bulk modulus to reformulate the 
Eq. (1) as 
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where K is calculated from the instantaneous parameters and is given by 
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and 
 )0()0( DMA0 EEE . (6) 

In Eqs. (4) and (5), the initial value of the corrected Young's relaxation modulus coincides to the uncorrected one. 
The  appears in Eq. (1) is realized as the instantaneous parameter of time-dependent Poisson's ratio, i.e., 0. By 
dividing Eq. (1) by Eq. (4), and rearranging the result, it follows: 
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If EDMA(t) can be expressed as the 2-element Prony series (the extension to N-element Prony series is 
straightforward), then its representation in Laplace transform domain (s-domain) is given by [20] 
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Replacing )(*E  by )(~ sEs  and )(*
DMAE  by )(~

DMA sEs , the corrected )(~ sEs  is obtained via Eq. (8): 
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and 

 
DMA
2

DMA
1

2

0
DMA
1

2

21

11

2
3

5
121

62
3

5
121

11

L
h

K
EE

L
h

,   
DMA
2

DMA
1

2

0
DMA2

21

1

2
3

5
121

62
3

5
121

1

L
h

K
EE

L
h

. (11) 

In addition, the relaxation-creep duality representation of E(t) can be expressed as 
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The modification of elastic Poisson's ratio to be time-dependent can be implemented by calculating the 
modulating constants, given by [20] 
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The characteristic times of (t) are the same as those calculated from Eqs. (11). Similar to E(t), the relaxation-creep 
duality representation of (t) can be expressed as 
 2211 eeee)( 0201
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where 
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2.2. Assigning  as the elastic Poisson's ratio 

When the elastic Poisson's ratio is regarded as , Eq. (4) is still valid, but K is calculated from the permanent 
parameters: 
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where 
 )()( DMAEEE . (18) 

In this case, the equilibrium value of the corrected Young's relaxation modulus coincides to the uncorrected one, and 
in Eq. (1),  is realized as the permanent parameter of the time-dependent Poisson's ratio. 

By following a similar derivation as in Section 2.1, the corrected Young's complex modulus can be expressed as 
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If EDMA(t) can be expressed as the 2-element Prony series, Eqs. (8), (9), (12)-(16) are still applicable, but the 
corrections of parameters are changed to 
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Fig. 1. Master curve for EMC, reference temperature is 30 oC 

3. Viscoelastic characterization of epoxy molding compound 

As an application example, the correction method described in Section 2 is applied to the DMA measurement of 
an EMC. The DMA experiment is conducted under a 3-point bending configuration. Dimension of the EMC 
specimen is 60 mm×10 mm×2 mm. The distance between the outer clamps is 35 mm and the bending oscillation 
amplitude is 10 m. The sampling points of frequencies are 1, 5, 10, 20, 50, 100, 150 and 200 Hz, while the 
temperature range is from -30 to 300 oC with constant heating rate of 3 oC/min. The time-temperature superposition 
(TTS) principle is applied to construct the storage modulus master curve with a reference temperature of 30 oC as 
shown in Fig. 1. The corresponding shift factors is modeled by using the Williams-Landel-Ferry (WLF) model, with 
the fitted model constants C1 = 437.63 and C2 = 2558.87. The fitted relaxation-creep duality representation 
parameters (superscripted by DMA) are shown in Tables 1 and 2. 

The only material property that is inputted into the DMA program for viscoelastic property calculations is the 
elastic Poisson's ratio, which is assigned with the value  = 0.4. Since the EMC behaves more like rubber after 
loaded for an extended time, the value of 0.4 is not adequate for , and should be considered as 0. The 
corresponding K can be calculated as 31.5 GPa, and the corrected modulating Young's moduli and characteristic 
times can be obtained according to Eqs. (10) and (11) (extended to 25 elements) and are shown in Tables 1 and 2. It 
can be seen from Tables 1 and 2 that the corrections are insignificant, especially for characteristic times. However, 
when Eq. (14) (extended to 25 elements) is used to correct the Poisson's ratio, it is shown that, as time increases, the 

(t) changes from 0.4 to 0.496. This trend is proper for the EMC which has a large-time behavior like rubber. 
 

Table 1. The measured values of modulating Young's moduli (superscripted by DMA) and the corrected values of 
modulating Young's moduli and modulating Poisson's ratios 

n 0 1 2 3 4 5 6 7 8
18900 18779 18538 18398 18089 17857 17571 17435 17145
18900 18784 18543 18403 18093 17861 17575 17438 17147
0.400 0.401 0.402 0.403 0.404 0.405 0.407 0.408 0.409

n 9 10 11 12 13 14 15 16 17
17035 16904 16632 16382 15752 14691 13374 10165 7502
17037 16905 16633 16383 15752 14692 13374 10165 7502
0.410 0.411 0.412 0.413 0.417 0.422 0.429 0.446 0.460

n 18 19 20 21 22 23 24
4980 3627 2052 1776 1582 1410 878 750
4980 3627 2052 1776 1582 1410 878 751

0.474 0.481 0.489 0.491 0.492 0.493 0.495 0.496

(MPa) DMA
nE

(MPa) nE

n

(MPa) DMA
nE

(MPa) nE

n

(MPa) DMA
nE

(MPa) nE

n  
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Table 2. The measured (superscripted by DMA) and corrected values of characteristic times 
n 1 2 3 4 5 6 7 8 9

1.000E+00 1.000E+01 1.000E+02 1.000E+03 1.000E+04 1.000E+05 1.000E+06 1.000E+07 1.000E+08
1.483E-06 3.805E-05 1.433E-04 4.834E-03 3.002E-02 4.409E-01 1.328E+00 4.728E+01 1.143E+02

n 10 11 12 13 14 15 16 17 18
1.000E+09 1.000E+10 1.000E+11 1.000E+12 1.000E+13 1.000E+14 1.000E+15 1.000E+16 1.000E+17
1.621E+03 4.144E+04 2.736E+05 8.766E+06 1.527E+08 1.530E+09 4.986E+10 3.658E+11 3.746E+12

n 19 20 21 22 23 24 25
1.000E+18 1.000E+19 1.000E+20 1.000E+21 1.000E+22 1.000E+23 1.000E+24
1.629E+13 2.513E+14 1.488E+14 2.657E+15 1.674E+16 8.874E+17 1.090E+18

(s) DMA
n

(s)- DMA
nn

(s) DMA
n

(s) DMA
n

(s)- DMA
nn

(s)- DMA
nn  

4. Conclusions 

A method is developed for obtaining the Young's relaxation modulus and time-dependent Poisson's ratio 
simultaneously by using DMA with the assumption of constant bulk modulus instead of constant Poisson's ratio. 
This method is based on the relaxation-creep duality representation, which is a variant of Prony series. The original 
elastic Poisson's ratio can be viewed as the instantaneous or the equilibrium response of the time-dependent 
Poisson's ratio. The constant bulk modulus is then calculated by either instantaneous or the equilibrium response of 
the time-dependent Poisson's ratio. The modulating Young's moduli and characteristic times from DMA 
measurement are corrected analytically by using the developed formulas. In addition, the time-dependent Poisson's 
ratio is obtained from the corrected modulating Young's moduli and the constant bulk modulus. 

The viscoelastic property of the EMC used for electronic packaging is considered as an example. For the DMA 
program, a value of 0.4 is inputted as the elastic Poisson's ratio. From the DMA measurement, the uncorrected 
Young's relaxation modulus is obtained and expressed by using a 25-element relaxation-creep duality representation. 
Corrections are made to both modulating moduli and characteristic times by using the developed method. 
Furthermore, the modulating constants for the time-dependent Poisson's ratio are calculated. Although the correction 
to Young's relaxation modulus is very small, the time-dependent Poisson's ratio varies largely from 0.4 to 0.496, and 
can’t be assumed as a constant. 
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