970 research outputs found

    Combined resistance and aerobic exercise training reduces insulin resistance and central adiposity in adolescent girls who are obese: randomized clinical trial

    Get PDF
    Introduction Exercise training is recommended for improving health and protecting against the development of metabolic and cardiovascular pathologies. Combined resistance and aerobic exercise training (CRAE) has been shown to provide unique benefits in older adults with cardiovascular diseases. Purpose We sought to determine the beneficial effects of CRAE in adolescent girls who are obese and hyperinsulinemic. Methods Forty adolescent girls who are obese (age 14.7 ± 1 years; BMI 30 ± 2) were randomly assigned to a “no exercise” (CON n = 20) or combined exercise group (EX n = 20). The EX group performed resistance and aerobic exercise for 12 weeks, 5 times per week. Exercise intensity was increased gradually, from 40 to 70% of heart rate reserve (HRR), every 4 weeks. The brachial-ankle pulse wave velocity (BaPWV), blood pressure (BP), heart rate (HR), blood leptin, adiponectin levels, and body composition were measured before and after the 12-week intervention. Results We observed that CRAE effectively reduced the body fat percentage, body weight, and waist circumference in the EX group (p \u3c 0.05). After 12 weeks of training, subjects in the CRAE group maintained appropriate leptin and adiponectin levels and showed positive improvements of blood insulin, glucose, and insulin resistance parameters relative to baseline and to the CON group (p \u3c 0.05). Conclusion CRAE is a useful therapeutic method to alleviate metabolic risk factors in adolescent girls who are obese and hyperinsulinemic

    Yuwaya Ngarra-li Community Briefing Report: Key Findings from the Food and Water Security Surveys in Walgett

    Full text link
    This Briefing Report summarises the key findings and recommendations from the Food and Water for Life Project's survey of food and water security in Walgett, NSW

    Comparative Genomics of the Mating-Type Loci of the Mushroom Flammulina velutipes Reveals Widespread Synteny and Recent Inversions

    Get PDF
    Mating-type loci of mushroom fungi contain master regulatory genes that control recognition between compatible nuclei, maintenance of compatible nuclei as heterokaryons, and fruiting body development. Regions near mating-type loci in fungi often show adapted recombination, facilitating the generation of novel mating types and reducing the production of self-compatible mating types. Compared to other fungi, mushroom fungi have complex mating-type systems, showing both loci with redundant function (subloci) and subloci with many alleles. The genomic organization of mating-type loci has been solved in very few mushroom species, which complicates proper interpretation of mating-type evolution and use of those genes in breeding programs.We report a complete genetic structure of the mating-type loci from the tetrapolar, edible mushroom Flammulina velutipes mating type A3B3. Two matB3 subloci, matB3a that contains a unique pheromone and matB3b, were mapped 177 Kb apart on scaffold 1. The matA locus of F. velutipes contains three homeodomain genes distributed over 73 Kb distant matA3a and matA3b subloci. The conserved matA region in Agaricales approaches 350 Kb and contains conserved recombination hotspots showing major rearrangements in F. velutipes and Schizophyllum commune. Important evolutionary differences were indicated; separation of the matA subloci in F. velutipes was diverged from the Coprinopsis cinerea arrangement via two large inversions whereas separation in S. commune emerged through transposition of gene clusters.In our study we determined that the Agaricales have very large scale synteny at matA (∼350 Kb) and that this synteny is maintained even when parts of this region are separated through chromosomal rearrangements. Four conserved recombination hotspots allow reshuffling of large fragments of this region. Next to this, it was revealed that large distance subloci can exist in matB as well. Finally, the genes that were linked to specific mating types will serve as molecular markers in breeding
    corecore