102 research outputs found

    Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Get PDF
    Caveolin-1 (Cav1) is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori) is a major risk factor for human gastric cancer (GC) where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES) but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS), infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird") compared to AGS cells stably transfected with Cav1 (AGS/Cav1). Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1) to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87) and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1) to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs) in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells

    Mapping infectious disease hospital surge threats to lessons learnt in Singapore: a systems analysis and development of a framework to inform how to DECIDE on planning and response strategies.

    Get PDF
    BACKGROUND: Hospital usage and service demand during an Infectious Disease (ID) outbreak can tax the health system in different ways. Herein we conceptualize hospital surge elements, and lessons learnt from such events, to help build appropriately matched responses to future ID surge threats. METHODS: We used the Interpretive Descriptive qualitative approach. Interviews (n = 35) were conducted with governance and public health specialists; hospital based staff; and General Practitioners. Key policy literature in tandem with the interview data were used to iteratively generate a Hospital ID Surge framework. We anchored our narrative account within this framework, which is used to structure our analysis. RESULTS: A spectrum of surge threats from combinations of capacity (for crowding) and capability (for treatment complexity) demands were identified. Starting with the Pyramid scenario, or an influx of high screening rates flooding Emergency Departments, alongside fewer and manageable admissions; the Reverse-Pyramid occurs when few cases are screened and admitted but those that are, are complex; during a 'Black' scenario, the system is overburdened by both crowding and complexity. The Singapore hospital system is highly adapted to crowding, functioning remarkably well at constant near-full capacity in Peacetime and resilient to Endemic surges. We catalogue 26 strategies from lessons learnt relating to staffing, space, supplies and systems, crystalizing institutional memory. The DECIDE model advocates linking these strategies to types of surge threats and offers a step-by-step guide for coordinating outbreak planning and response. CONCLUSIONS: Lack of a shared definition and decision making of surge threats had rendered the procedures somewhat duplicative. This burden was paradoxically exacerbated by a health system that highly prizes planning and forward thinking, but worked largely in silo until an ID crisis hit. Many such lessons can be put into play to further strengthen our current hospital governance and adapted to more diverse settings

    SMAR1 binds to T(C/G) repeatvand inhibits tumor progression by regulating miR-371-373 cluster

    Get PDF
    Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIPsequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-37

    Loss of Cofilin 1 Disturbs Actin Dynamics, Adhesion between Enveloping and Deep Cell Layers and Cell Movements during Gastrulation in Zebrafish

    Get PDF
    During gastrulation, cohesive migration drives associated cell layers to the completion of epiboly in zebrafish. The association of different layers relies on E-cadherin based cellular junctions, whose stability can be affected by actin turnover. Here, we examined the effect of malfunctioning actin turnover on the epibolic movement by knocking down an actin depolymerizing factor, cofilin 1, using antisense morpholino oligos (MO). Knockdown of cfl1 interfered with epibolic movement of deep cell layer (DEL) but not in the enveloping layer (EVL) and the defect could be specifically rescued by overexpression of cfl1. It appeared that the uncoordinated movements of DEL and EVL were regulated by the differential expression of cfl1 in the DEL, but not EVL as shown by in situ hybridization. The dissociation of DEL and EVL was further evident by the loss of adhesion between layers by using transmission electronic and confocal microscopy analyses. cfl1 morphants also exhibited abnormal convergent extension, cellular migration and actin filaments, but not involution of hypoblast. The cfl1 MO-induced cell migration defect was found to be cell-autonomous in cell transplantation assays. These results suggest that proper actin turnover mediated by Cfl1 is essential for adhesion between DEL and EVL and cell movements during gastrulation in zebrafish

    Structural and Functional Deficits in a Neuronal Calcium Sensor-1 Mutant Identified in a Case of Autistic Spectrum Disorder

    Get PDF
    Neuronal calcium sensor-1 (NCS-1) is a Ca2+ sensor protein that has been implicated in the regulation of various aspects of neuronal development and neurotransmission. It exerts its effects through interactions with a range of target proteins one of which is interleukin receptor accessory protein like-1 (IL1RAPL1) protein. Mutations in IL1RAPL1 have recently been associated with autism spectrum disorders and a missense mutation (R102Q) on NCS-1 has been found in one individual with autism. We have examined the effect of this mutation on the structure and function of NCS-1. From use of NMR spectroscopy, it appeared that the R102Q affected the structure of the protein particularly with an increase in the extent of conformational exchange in the C-terminus of the protein. Despite this change NCS-1(R102Q) did not show changes in its affinity for Ca2+ or binding to IL1RAPL1 and its intracellular localisation was unaffected. Assessment of NCS-1 dynamics indicated that it could rapidly cycle between cytosolic and membrane pools and that the cycling onto the plasma membrane was specifically changed in NCS-1(R102Q) with the loss of a Ca2+ -dependent component. From these data we speculate that impairment of the normal cycling of NCS-1 by the R102Q mutation could have subtle effects on neuronal signalling and physiology in the developing and adult brain

    The role of sex in the pathophysiology of pulmonary hypertension

    Get PDF
    Pulmonary arterial hypertension (PAH) is a progressive disease characterised by increased pulmonary vascular resistance and pulmonary artery remodelling as result of increased vascular tone and vascular cell proliferation, respectively. Eventually, this leads to right heart failure. Heritable PAH is caused by a mutation in the bone morphogenetic protein receptor-II (BMPR-II). Female susceptibility to PAH has been known for some time, and most recent figures show a female-to-male ratio of 4:1. Variations in the female sex hormone estrogen and estrogen metabolism modify FPAH risk, and penetrance of the disease in BMPR-II mutation carriers is increased in females. Several lines of evidence point towards estrogen being pathogenic in the pulmonary circulation, and thus increasing the risk of females developing PAH. Recent studies have also suggested that estrogen metabolism may be crucial in the development and progression of PAH with studies indicating that downstream metabolites such as 16α-hydroxyestrone are upregulated in several forms of experimental pulmonary hypertension (PH) and can cause pulmonary artery smooth muscle cell proliferation and subsequent vascular remodelling. Conversely, other estrogen metabolites such as 2-methoxyestradiol have been shown to be protective in the context of PAH. Estrogen may also upregulate the signalling pathways of other key mediators of PAH such as serotonin

    The multiple faces of self-assembled lipidic systems

    Get PDF
    Lipids, the building blocks of cells, common to every living organisms, have the propensity to self-assemble into well-defined structures over short and long-range spatial scales. The driving forces have their roots mainly in the hydrophobic effect and electrostatic interactions. Membranes in lamellar phase are ubiquitous in cellular compartments and can phase-separate upon mixing lipids in different liquid-crystalline states. Hexagonal phases and especially cubic phases can be synthesized and observed in vivo as well. Membrane often closes up into a vesicle whose shape is determined by the interplay of curvature, area difference elasticity and line tension energies, and can adopt the form of a sphere, a tube, a prolate, a starfish and many more. Complexes made of lipids and polyelectrolytes or inorganic materials exhibit a rich diversity of structural morphologies due to additional interactions which become increasingly hard to track without the aid of suitable computer models. From the plasma membrane of archaebacteria to gene delivery, self-assembled lipidic systems have left their mark in cell biology and nanobiotechnology; however, the underlying physics is yet to be fully unraveled

    Kisspeptin regulation of genes involved in cell invasion and angiogenesis in first trimester human trophoblast cells

    Get PDF
    The precise regulation of extravillous trophoblast invasion of the uterine wall is a key process in successful pregnancies. Kisspeptin (KP) has been shown to inhibit cancer cell metastasis and placental trophoblast cell migration. In this study primary cultures of first trimester human trophoblast cells have been utilized in order to study the regulation of invasion and angiogenesis-related genes by KP. Trophoblast cells were isolated from first trimester placenta and their identity was confirmed by immunostaining for cytokeratin-7. Real-time quantitative RT-PCR demonstrated that primary trophoblast cells express higher levels of GPR54 (KP receptor) and KP mRNA than the trophoblast cell line HTR8Svneo. Furthermore, trophoblast cells also expressed higher GPR54 and KP protein levels. Treating primary trophoblast cells with KP induced ERK1/2 phosphorylation, while co-treating the cells with a KP antagonist almost completely blocked the activation of ERK1/2 and demonstrated that KP through its cognate GPR54 receptor can activate ERK1/2 in trophoblast cells. KP reduced the migratory capability of trophoblast cells in a scratch-migration assay. Real-time quantitative RT-PCR demonstrated that KP treatment reduced the expression of matrix metalloproteinase 1, 2, 3, 7, 9, 10, 14 and VEGF-A, and increased the expression of tissue inhibitors of metalloproteinases 1 and 3. These results suggest that KP can inhibit first trimester trophoblast cells invasion via inhibition of cell migration and down regulation of the metalloproteinase system and VEGF-A

    RASSF1A inhibits PDGFB-driven malignant phenotypes of nasopharyngeal carcinoma cells in a YAP1-dependent manner.

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC
    • …
    corecore