32 research outputs found
Parallel fast fourier transform in SPMD style of cilk
Copyright © 2019 Inderscience Enterprises Ltd. In this paper, we propose a parallel one-dimensional non-recursive fast Fourier transform (FFT) program based on conventional Cooley-Tukey’s algorithm written in C using Cilk in single program multiple data (SPMD) style. As a highly compact designed code, this code is compared with a highly tuned parallel recursive fast Fourier transform (FFT) using Cilk, which is included in Cilk package of version 5.4.6. Both algorithms are executed on multicore servers, and experimental results show that the performance of the SPMD style of Cilk fast Fourier transform (FFT) parallel code is highly competitive and promising
Chinese Herbal Medicines for the Treatment of Type A H1N1 Influenza: A Systematic Review of Randomized Controlled Trials
Chinese herbs are thought to be effective for type A H1N1 influenza. Series of Chinese herbs have been authorized recommended by the Chinese government, and until now a number of clinical trials of Chinese herbs for H1N1 influenza have been conducted. However, there is no critically appraised evidence such as systematic reviews or metaanalyses on potential benefits and harms of medicinal herbs for H1N1 influenza to justify their clinical use and their recommendation.
CENTRAL, MEDLINE, EMBASE, CBM, CNKI, VIP, China Important Conference Papers Database, China
Dissertation Database, and online clinical trial registry websites were searched for published and unpublished randomized controlled trials (RCTs) of Chinese herbs for H1N1 influenza till 31 August, 2011. A total of 26 RCTs were identified and reviewed. Most of the RCTs were of high risk of bias with flawed study design and poor methodological quality. The combination of several Chinese herbal medicines with or without oseltamivir demonstrated positive effect on fever
resolution, relief of symptoms, and global effectiveness rate compared to oseltamivir alone. However, only one herbal medicine showed positive effect on viral shedding. Most of the trials did not report adverse events, and the safety of herbal medicines is still uncertain.
Some Chinese herbal medicines demonstrated potential positive effect for 2009 type A H1N1 influenza; however, due to the lack of placebo controlled trial and lack of repeated test of the intervention, we could not draw confirmative conclusions on the beneficial effect of Chinese herbs for H1N1 influenza. More rigorous trials are warranted to support their clinical use
Towards Understanding the Origin of Cosmic-Ray Positrons
Precision measurements of cosmic ray positrons are presented up to 1 TeV based on 1.9 million positrons collected by the Alpha Magnetic Spectrometer on the International Space Station. The positron flux exhibits complex energy dependence. Its distinctive properties are (a) a significant excess starting from 25.2 +/- 1.8 GeV compared to the lower-energy, power-law trend, (b) a sharp dropoff above 284(-64)(+91) GeV, (c) in the entire energy range the positron flux is well described by the sum of a term associated with the positrons produced in the collision of cosmic rays, which dominates at low energies, and a new source term of positrons, which dominates at high energies, and (d) a finite energy cutoff of the source term of E-s = 810(-180)(+310) GeV is established with a significance of more than 4 sigma. These experimental data on cosmic ray positrons show that, at high energies, they predominantly originate either from dark matter annihilation or from other astrophysical sources
Properties of Neon, Magnesium, and Silicon Primary Cosmic Rays Results from the Alpha Magnetic Spectrometer
We report the observation of new properties of primary cosmic rays, neon (Ne), magnesium (Mg), and silicon (Si), measured in the rigidity range 2.15 GV to 3.0 TV with 1.8 x 10(6) Ne, 2.2 x 10(6) Mg, and 1.6 x 10(6) Si nuclei collected by the Alpha Magnetic Spectrometer experiment on the International Space Station. The Ne and Mg spectra have identical rigidity dependence above 3.65 GV. The three spectra have identical rigidity dependence above 86.5 GV, deviate from a single power law above 200 GV, and harden in an identical way. Unexpectedly, above 86.5 GV the rigidity dependence of primary cosmic rays Ne, Mg, and Si spectra is different from the rigidity dependence of primary cosmic rays He, C, and O. This shows that the Ne, Mg, and Si and He, C, and O are two different classes of primary cosmic rays
Properties of Cosmic Helium Isotopes Measured by the Alpha Magnetic Spectrometer
Precision measurements by the Alpha Magnetic Spectrometer (AMS) on the International Space Station of He-3 and He-4 fluxes are presented. The measurements are based on 100 million He-4 nuclei in the rigidity range from 2.1 to 21 GV and 18 million He-3 from 1.9 to 15 GV collected from May 2011 to November 2017. We observed that the He-3 and He-4 fluxes exhibit nearly identical variations with time. The relative magnitude of the variations decreases with increasing rigidity. The rigidity dependence of the He-3/He-4 flux ratio is measured for the first time. Below 4 GV, the He-3/He-4 flux ratio was found to have a significant long-term time dependence. Above 4 GV, the He-3/He-4 flux ratio was found to be time independent, and its rigidity dependence is well described by a single power law proportional to R-Delta with Delta = 0.294 0.004. Unexpectedly, this value is in agreement with the B/O and B/C spectral indices at high energies
Towards Understanding the Origin of Cosmic-Ray Electrons
Precision results on cosmic-ray electrons are presented in the energy range from 0.5 GeV to 1.4 TeV based on 28.1 x 10(6) electrons collected by the Alpha Magnetic Spectrometer on the International Space Station. In the entire energy range the electron and positron spectra have distinctly different magnitudes and energy dependences. The electron flux exhibits a significant excess starting from 42.1(-5.2)(+5.4) GeV compared to the lower energy trends, but the nature of this excess is different from the positron flux excess above 25.2 +/- 1.8 GeV. Contrary to the positron flux, which has an exponential energy cutoff of 810(-180)(+310) GeV, at the 5 sigma level the electron flux does not have an energy cutoff below 1.9 TeV. In the entire energy range the electron flux is well described by the sum of two power law components. The different behavior of the cosmic-ray electrons and positrons measured by the Alpha Magnetic Spectrometer is clear evidence that most high energy electrons originate from different sources than high energy positrons
Precision Measurement of Cosmic-Ray Nitrogen and its Primary and Secondary Components with the Alpha Magnetic Spectrometer on the International Space Station
A precision measurement of the nitrogen flux with rigidity (momentum per unit charge) from 2.2 GV to 3.3 TV based on 2.2 x 10(6) events is presented. The detailed rigidity dependence of the nitrogen flux spectral index is presented for the first time. The spectral index rapidly hardens at high rigidities and becomes identical to the spectral indices of primary He, C, and O cosmic rays above similar to 700 GV. We observed that the nitrogen flux Phi(N) can be presented as the sum of its primary component Phi(P)(N) and secondary component Phi(S)(N), Phi(N) = Phi(P)(N) + Phi(S)(N), and we found Phi(N) is well described by the weighted sum of the oxygen flux Phi(O) (primary cosmic rays) and the boron flux Phi(B) (secondary cosmic rays), with Phi(P)(N) = (0.090 +/- 0.002) x Phi(O) and Phi(S)(N) = (0.62 +/- 0.02) x Phi(B) over the entire rigidity range. This corresponds to a change of the contribution of the secondary cosmic ray component in the nitrogen flux from 70% at a few GV to < 30% above 1 TV
Observation of New Properties of Secondary Cosmic Rays Lithium, Beryllium, and Boron by the Alpha Magnetic Spectrometer on the International Space Station
We report on the observation of new properties of secondary cosmic rays Li, Be, and B measured in the rigidity (momentum per unit charge) range 1.9 GV to 3.3 TV with a total of 5.4 x 10(6) nuclei collected by AMS during the first five years of operation aboard the International Space Station. The Li and B fluxes have an identical rigidity dependence above 7 GV and all three fluxes have an identical rigidity dependence above 30 GV with the Li/Be flux ratio of 2.0 +/- 0.1. The three fluxes deviate from a single power law above 200 GV in an identical way. This behavior of secondary cosmic rays has also been observed in the AMS measurement of primary cosmic rays He, C, and O but the rigidity dependences of primary cosmic rays and of secondary cosmic rays are distinctly different. In particular, above 200 GV, the secondary cosmic rays harden more than the primary cosmic rays
Observation of Fine Time Structures in the Cosmic Proton and Helium Fluxes with the Alpha Magnetic Spectrometer on the International Space Station
We present the precision measurement from May 2011 to May 2017 (79 Bartels rotations) of the proton fluxes at rigidities from 1 to 60 GV and the helium fluxes from 1.9 to 60 GV based on a total of 1 x 109 events collected with the Alpha Magnetic Spectrometer aboard the International Space Station. This measurement is in solar cycle 24, which has the solar maximum in April 2014. We observed that, below 40 GV, the proton flux and the helium flux show nearly identical fine structures in both time and relative amplitude. The amplitudes of the flux structures decrease with increasing rigidity and vanish above 40 GV. The amplitudes of the structures are reduced during the time period, which started one year after solar maximum, when the proton and helium fluxes steadily increase. Above similar to 3 GV the p/He flux ratio is time independent. We observed that below similar to 3 GV the ratio has a long-term decrease coinciding with the period during which the fluxes start to rise
Observation of the Identical Rigidity Dependence of He, C, and O Cosmic Rays at High Rigidities by the Alpha Magnetic Spectrometer on the International Space Station
We report the observation of new properties of primary cosmic rays He, C, and O measured in the rigidity (momentum/charge) range 2 GV to 3 TV with 90 x 10(6) helium, 8.4 x 10(6) carbon, and 7.0 x 10(6) oxygen nuclei collected by the Alpha Magnetic Spectrometer ( AMS) during the first five years of operation. Above 60 GV, these three spectra have identical rigidity dependence. They all deviate from a single power law above 200 GV and harden in an identical way