3,998 research outputs found

    Template Synthesis of Three-Dimensional Cubic Ordered Mesoporous Carbon With Tunable Pore Sizes

    Get PDF
    Three-dimensional cubic ordered mesoporous carbons with tunable pore sizes have been synthesized by using cubic Ia3d mesoporous KIT-6 silica as the hard template and boric acid as the pore expanding agent. The prepared ordered mesoporous carbons were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption–desorption analysis. The results show that the pore sizes of the prepared ordered mesoporous carbons with three-dimensional cubic structure can be regulated in the range of 3.9–9.4 nm. A simplified model was proposed to analyze the tailored pore sizes of the prepared ordered mesoporous carbons on the basis of the structural parameters of the silica template

    The Directed Dominating Set Problem: Generalized Leaf Removal and Belief Propagation

    Full text link
    A minimum dominating set for a digraph (directed graph) is a smallest set of vertices such that each vertex either belongs to this set or has at least one parent vertex in this set. We solve this hard combinatorial optimization problem approximately by a local algorithm of generalized leaf removal and by a message-passing algorithm of belief propagation. These algorithms can construct near-optimal dominating sets or even exact minimum dominating sets for random digraphs and also for real-world digraph instances. We further develop a core percolation theory and a replica-symmetric spin glass theory for this problem. Our algorithmic and theoretical results may facilitate applications of dominating sets to various network problems involving directed interactions.Comment: 11 pages, 3 figures in EPS forma

    Proteomic analysis of early diabetic retinopathy reveals mediators of neurodegenerative brain diseases

    Full text link
    © 2018 The Authors. PURPOSE. Current evidence suggests that retinal neurodegeneration is an early event in the pathogenesis of diabetic retinopathy. Our main goal was to examine whether, in the diabetic human retina, common proteins and pathways are shared with brain neurodegenerative diseases. METHODS. A proteomic analysis was performed on three groups of postmortem retinas matched by age: nondiabetic control retinas (n = 5), diabetic retinas without glial activation (n = 5), and diabetic retinas with glial activation (n = 5). Retinal lysates from each group were pooled and run on an SDS-PAGE gel. Bands were analyzed sequentially by liquid chromatography-mass spectrometry (LC/MS) using an Orbitrap Mass Spectrometer. RESULTS. A total of 2190 proteins were identified across all groups. To evaluate the association of the identified proteins with neurological signaling, significant signaling pathways belonging to the category ‘‘Neurotransmitters and Other Nervous System Signaling” were selected for analysis. Pathway analysis revealed that ‘‘Neuroprotective Role of THOP1 in Alzheimer’s Disease” and ‘‘Unfolded Protein Response” pathways were uniquely enriched in control retinas. By contrast, ‘‘Dopamine Degradation” and ‘‘Parkinson’s Signaling” were enriched only in diabetic retinas with glial activation. The ‘‘Neuregulin Signaling,” “Synaptic Long Term Potentiation,” and “Amyloid Processing” pathways were enriched in diabetic retinas with no glial activation. CONCLUSIONS. Diabetes-induced retinal neurodegeneration and brain neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, share common pathogenic pathways. These findings suggest that the study of neurodegeneration in the diabetic retina could be useful to further understand the neurodegenerative processes that occur in the brain of persons with diabetes

    Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    Get PDF
    Background: Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings: Male balb/c mice were assigned randomly to either sham burn (control) or 30 % total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression

    Agreement between chromogenic in situ hybridisation (CISH) and FISH in the determination of HER2 status in breast cancer

    Get PDF
    Determination of the HER2/neu (HER2) status in breast carcinoma has become necessary for the selection of breast cancer patients for trastuzumab therapy. Amplification of the gene analysed by fluorescence in situ hybridisation (FISH) or overexpression of the protein determined by immunohistochemistry (IHC) are the two major methods to establish this status. A strong correlation has been previously demonstrated between these two methods. However, FISH is not always feasible in routine practice and weakly positive IHC tumours (2+) do not always correspond to a gene amplification. Our study was performed in order to evaluate the contribution of chromogenic in situ hybridisation (CISH), which enables detection of the gene copies through an immunoperoxidase reaction. CISH was performed in 79 breast carcinomas for which the HER2 status was previously determined by IHC and FISH. The results of IHC, FISH and CISH were compared for each tumour. CISH procedures were successful in 95% of our cases. Whatever the IHC results, we found a very good concordance (96%) between CISH and FISH. Our study confirms that CISH may be an alternative to FISH for the determination of the gene amplification status in 2+ tumours. Our results allow us to think that, in many laboratories, CISH may also be an excellent method to calibrate the IHC procedures or, as a quality control test, to check regularly that the IHC signal is in agreement with the gene statu

    Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention

    Get PDF
    The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 ”M) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 ”M) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 ”M increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 ”M promoted endothelial tube formation (118% of the control), whereas at 10-20 ”M it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint

    Optogenetics and deep brain stimulation neurotechnologies

    Full text link
    Brain neural network is composed of densely packed, intricately wired neurons whose activity patterns ultimately give rise to every behavior, thought, or emotion that we experience. Over the past decade, a novel neurotechnique, optogenetics that combines light and genetic methods to control or monitor neural activity patterns, has proven to be revolutionary in understanding the functional role of specific neural circuits. We here briefly describe recent advance in optogenetics and compare optogenetics with deep brain stimulation technology that holds the promise for treating many neurological and psychiatric disorders
    • 

    corecore