18 research outputs found

    Development of enzymatic H2 production and CO2 reduction systems

    No full text
    One of today’s most pressing scientific challenges is the conception, development and deployment of renewable energy technologies that will meet the demands of a rapidly increasing population. The motivation is not only dwindling fossil fuel reserves, but also the necessary curtailment of emissions of the greenhouse gas carbon dioxide (a product of burning fossil fuels). The sun provides a vast amount of energy (120,000 TW globally), and one major challenge is the conversion of a fraction of this energy into chemical energy, thereby allowing it to be stored. Dihydrogen (H₂) that is produced from water is an attractive candidate to store solar energy (a ‘solar fuel’), as are high energy carbon-containing molecules (such as CO) that are formed directly from carbon dioxide.One key aspect is the development of catalysts that are able to offer high rates and efficiencies. In biology, some microbes acquire energy from the metabolism of H₂ and CO. The biological catalysts - enzymes - that are responsible are hydrogenases (for the oxidation of H₂ to protons); and carbon monoxide dehydrogenases (CODHs, for the oxidation of CO to CO₂). These redox enzymes, containing nickel and iron as the only metals, are extraordinary in terms of their catalytic characteristics: many are fully reversible catalysts and offer very high turnover frequencies (thousands per second are common), with only tiny energy input requirements.This Thesis uses a hydrogenase from the bacterium Escherichia coli, and two CODHs from the bacterium Carboxydothermus hydrogenoformans, as the catalysts in H2 production and CO₂ reduction systems. Chapter 3 describes the concept and development not of a solar fuel system, but of a device that catalyses the water-gas shift reaction (the reaction between CO and water to form H₂ and CO₂) - a process of major industrial importance for the production of high purity H₂. Chapters 4, 5 and 6 detail photochemical CO₂ reduction systems that are driven by visible light. These systems, operating under mild, aqueous conditions, involve CODHs attached either to TiO₂ nanoparticles that are sensitised to visible light by the co-attachment of a ruthenium-based dye complex, or to cadmium sulfide nanomaterials that, having a narrow band gap, are inherently photoexcitable by visible light.The motivation here is not the construction of technological devices; indeed, the enzymes that are used are fragile, highly sensitive to oxygen, and impossible to scale to industrial levels. Rather, the drivers are those of scientific curiosity (can the incorporation of these remarkable biological catalysts enable the creation of outstanding solar fuel devices?), and of producing systems that serve as benchmarks and inspiration for the development of fully synthetic systems that are robust and scalable.</p

    Oxidation of dilute H-2 and H-2/O-2 mixtures by hydrogenases and Pt

    No full text
    Hydrogenase enzymes that allow micro-organisms to gain energy from oxidation of H2 undergo efficient electrocatalysis of H2 oxidation or production when adsorbed on a graphite rotating disk electrode [K.A. Vincent, A. Parkin, F.A. Armstrong, Chem. Rev. 107 (2007) 4366]. Combining potential sweeps or steps with precisely controlled gas exchanges is enabling us to build up a detailed understanding of the many factors that control the chemistry of nickel-iron membrane-bound hydrogenase (MBH) enzymes. The observation that the MBH enzymes from Ralstonia strains have extremely high affinity for H2 and continue oxidising H2 in the presence of O2 and CO has relevance for selective fuel cell catalysis [K.A. Vincent, J.A. Cracknell, J.R. Clark, M. Ludwig, O. Lenz, B. Friedrich, F.A. Armstrong, Chem. Commun. (2006) 5033; K.A. Vincent, J.A. Cracknell, O. Lenz, I. Zebger, B. Friedrich, F.A. Armstrong, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 16951], and this has led us to compare the ability of hydrogenases and platinum to oxidise low levels of H2 and mixtures of H2 and O2. We show that Pt is a poor catalyst for oxidation of sub-atmospheric levels of H2 compared to the MBH from Ralstonia eutropha H16, and that at a platinised electrode, H2 oxidation competes less favourably with reduction of O2 compared to the situation at hydrogenase-modified graphite. This should have implications for development of future selective energy catalysts able to concentrate the energy available from dilute H2. © 2009 Elsevier Ltd. All rights reserved

    Enzymes and bio-inspired electrocatalysts in solar fuel devices

    No full text
    The development of robust systems for the conversion of solar energy into chemical fuels is an important subject in renewable energy research. Key aspects are efficient and rapid catalysis of both fuel production (reduction of H 2O or CO2), and water oxidation. Enzymes often have extraordinary and unique capabilities as electrocatalysts, and in this Perspective we consider the role that these molecules can play through their incorporation into model systems for solar fuel production, or as inspiration for synthetic catalysts. This journal is © 2012 The Royal Society of Chemistry

    CO2 photoreduction at enzyme-modified metal oxide nanoparticles

    No full text
    A model system for photoreduction of CO2 to CO using visible light has been extensively studied, using a catalyst for which the CO 2/CO reaction is electrochemically reversible. The hybrid system comprises metal oxide nanoparticles functionalised with the enzyme carbon monoxide dehydrogenase (CODH), and sensitised to visible light using a ruthenium bipyridyl photosensitiser. An anatase/rutile TiO2 mixture (Evonik Degussa P25) was selected as the most suitable semiconductor, and CO production rates and stability were examined as a function of each component (photosensitiser, enzyme and TiO2). Tolerance to O2 and effects of different electron donors were also investigated, together with strategies to control enzyme binding at the surface of TiO2 in order to enhance overall activity. © 2011 The Royal Society of Chemistry

    Efficient and clean photoreduction of CO(2) to CO by enzyme-modified TiO(2) nanoparticles using visible light.

    No full text
    A hybrid enzyme-nanoparticle system is described for achieving clean reduction of CO(2) to CO using visible light as the energy source. An aqueous dispersion of TiO(2) nanoparticles modified by attachment of carbon monoxide dehydrogenase (CODH) and a Ru photosensitizer produces CO at a rate of 250 mumol of CO (g of TiO(2))(-1) h(-1) when illuminated with visible light at pH 6 and 20 degrees C

    Visible light-driven CO2 reduction by enzyme coupled CdS nanocrystals.

    No full text
    Assemblies of carbon monoxide dehydrogenase molecules with CdS nanocrystals show fast CO(2) reduction driven by visible light. Activity is strongly influenced by size and shape of nanocrystals, and by the nature of the electron donor

    Structural and functional characterization of the hydrogenase-maturation HydF protein

    No full text
    International audience[FeFe] hydrogenase (HydA) catalyzes interconversion between 2H+ and H2 at an active site composed of a [4Fe-4S] cluster linked to a 2Fe subcluster that harbors CO, CN− and azapropanedithiolate (adt2−) ligands. HydE, HydG and HydF are the maturases specifically involved in the biosynthesis of the 2Fe subcluster. Using ligands synthesized by HydE and HydG, HydF assembles a di-iron precursor of the 2Fe subcluster and transfers it to HydA for maturation. Here we report the first X-ray structure of HydF with its [4Fe-4S] cluster. The cluster is chelated by three cysteines and an exchangeable glutamate, which allows the binding of synthetic mimics of the 2Fe subcluster. [Fe2(adt)(CO)4(CN)2]2− is proposed to be the true di-iron precursor because, when bound to HydF, it matures HydA and displays features in Fourier transform infrared (FTIR) spectra that are similar to those of the native HydF active intermediate. A new route toward the generation of artificial hydrogenases, as combinations of HydF and such biomimetic complexes, is proposed on the basis of the observed hydrogenase activity of chemically modified HydF
    corecore