90 research outputs found

    Rationale, design and methodology for Intraventricular Pressure Gradients Study: a novel approach for ventricular filling assessment in normal and falling hearts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intraventricular pressure gradients have been described between the base and the apex of the left ventricle during early diastolic ventricular filling, as well as, their increase after systolic and diastolic function improvement. Although, systolic gradients have also been observed, data are lacking on their magnitude and modulation during cardiac dysfunction. Furthermore, we know that segmental dysfunction interferes with the normal sequence of regional contraction and might be expected to alter the physiological intraventricular pressure gradients. The study hypothesis is that systolic and diastolic gradients, a marker of normal left ventricular function, may be related to physiological asynchrony between basal and apical myocardial segments and they can be attenuated, lost entirely, or even reversed when ventricular filling/emptying is impaired by regional acute ischemia or severe aortic stenosis.</p> <p>Methods/Design</p> <p><it>Animal Studies: </it>Six rabbits will be completely instrumented to measuring apex to outflow-tract pressure gradient and apical and basal myocardial segments lengthening changes at basal, afterloaded and ischemic conditions. Afterload increase will be performed by abruptly narrowing or occluding the ascending aorta during the diastole and myocardial ischemia will be induced by left coronary artery ligation, after the first diagonal branch.</p> <p><it>Patient Studies: </it>Patients between 65-80 years old (n = 12), both genders, with severe aortic stenosis referred for aortic valve replacement will be selected as eligible subjects. A high-fidelity pressure-volume catheter will be positioned through the ascending aorta across the aortic valve to measure apical and outflow-tract pressure before and after aortic valve replacement with a bioprosthesis. Peak and average intraventricular pressure gradients will be recorded as apical minus outflow-tract pressure and calculated during all diastolic and systolic phases of cardiac cycle.</p> <p>Discussion</p> <p>We expect to validate the application of our method to obtain intraventricular pressure gradients in animals and patients and to promote a methodology to better understand the ventricular relaxation and filling and their correlation with systolic function.</p

    Effect of folate derivatives on the activity of antifolate drugs used against malaria and cancer

    Get PDF
    The folate derivatives folic acid (FA) and folinic acid (FNA) decrease the in vivo and in vitro activities of antifolate drugs in Plasmodium falciparum. However, the effects of 5-methyl-tetrahydrofolate (5-Me-THF) and tetrahydrofolate (THF), the two dominant circulating folate forms in humans, have not been explored yet. We have investigated the effects of FA, FNA, 5-Me-THF, and THF on the in vitro activity of the antimalarial antifolates pyrimethamine and chlorcycloguanil and the anticancer antifolates methotrexate (MTX), aminopterin, and trimetrexate (TMX), against P. falciparum. The results indicate that these anticancers are potent against P. falciparum, with IC50 < 50 nM. 5-Me-THF does not significantly decrease the activity of all tested drugs, and none of the tested folate derivatives significantly decrease the activity of these anticancers. Thus, malaria folate metabolism has features different from those in human, and the exploitation of this difference could lead to the discovery of new drugs to treat malaria. For instance, the combination of 5-Me-THF with a low dose of TMX could be used to treat malaria. In addition, the safety of a low dose of MTX in the treatment of arthritis indicates that this drug could be used alone to treat malaria

    A critical role of RBM8a in proliferation and differentiation of embryonic neural progenitors

    Get PDF
    BACKGROUND: Nonsense mediated mRNA decay (NMD) is an RNA surveillance mechanism that controls RNA stability and ensures the speedy degradation of erroneous and unnecessary transcripts. This mechanism depends on several core factors in the exon junction complex (EJC), eIF4A3, RBM8a, Magoh, and BTZ, as well as peripheral factors to distinguish premature stop codons (PTCs) from normal stop codons in transcripts. Recently, emerging evidence has indicated that NMD factors are associated with neurodevelopmental disorders such as autism spectrum disorder (ASD) and intellectual disability (ID). However, the mechanism in which these factors control embryonic brain development is not clear. RESULT: We found that RBM8a is critical for proliferation and differentiation in cortical neural progenitor cells (NPCs). RBM8a is highly expressed in the subventricular zone (SVZ) of the early embryonic cortex, suggesting that RBM8a may play a role in regulating NPCs. RBM8a overexpression stimulates embryonic NPC proliferation and suppresses neuronal differentiation. Conversely, knockdown of RBM8a in the neocortex reduces NPC proliferation and promotes premature neuronal differentiation. Moreover, overexpression of RBM8a suppresses cell cycle exit and keeps cortical NPCs in a proliferative state. To uncover the underlying mechanisms of this phenotype, genome-wide RNAseq was used to identify potential downstream genes of RBM8a in the brain, which have been implicated in autism and neurodevelopmental disorders. Interestingly, autism and schizophrenia risk genes are highly represented in downstream transcripts of RBM8a. In addition, RBM8a regulates multiple alternative splicing genes and NMD targets that are implicated in ASD. Taken together, this data suggests a novel role of RBM8a in the regulation of neurodevelopment. CONCLUSIONS: Our studies provide some insight into causes of mental illnesses and will facilitate the development of new therapeutic strategies for neurodevelopmental illnesses. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13064-015-0045-7) contains supplementary material, which is available to authorized users

    Cognate antigen engagement on parenchymal cells stimulates CD8(+) T cell proliferation in situ

    Get PDF
    T-cell responses are initiated upon cognate presentation by professional antigen presenting cells in lymphoid tissue. T cells then migrate to inflamed tissues, but further T-cell stimulation in these parenchymal target sites is not well understood. Here we show that T-cell expansion within inflamed tissues is a distinct phase that is neither a classical primary nor classical secondary response. This response, which we term 'the mezzanine response', commences within days after initial antigen encounter, unlike the secondary response that usually occurs weeks after priming. A further distinction of this response is that T-cell proliferation is driven by parenchymal cell antigen presentation, without requiring professional antigen presenting cells, but with increased dependence on IL-2. The mezzanine response might, therefore, be a new target for inhibiting T-cell responses in allograft rejection and autoimmunity or for enhancing T-cell responses in the context of microbial or tumour immunity
    corecore