634 research outputs found
On Flux Quantization in F-Theory II: Unitary and Symplectic Gauge Groups
We study the quantization of the M-theory G-flux on elliptically fibered
Calabi-Yau fourfolds with singularities giving rise to unitary and symplectic
gauge groups. We seek and find its relation to the Freed-Witten quantization of
worldvolume fluxes on 7-branes in type IIB orientifold compactifications on
Calabi-Yau threefolds. By explicitly constructing the appropriate four-cycles
on which to calculate the periods of the second Chern class of the fourfolds,
we find that there is a half-integral shift in the quantization of G-flux
whenever the corresponding dual 7-brane is wrapped on a non-spin submanifold.
This correspondence of quantizations holds for all unitary and symplectic gauge
groups, except for SU(3), which behaves mysteriously. We also perform our
analysis in the case where, in addition to the aforementioned gauge groups,
there is also a 'flavor' U(1)-gauge group.Comment: 33 pages, 4 figure
Anomaly Cancelation in Field Theory and F-theory on a Circle
We study the manifestation of local gauge anomalies of four- and
six-dimensional field theories in the lower-dimensional Kaluza-Klein theory
obtained after circle compactification. We identify a convenient set of
transformations acting on the whole tower of massless and massive states and
investigate their action on the low-energy effective theories in the Coulomb
branch. The maps employ higher-dimensional large gauge transformations and
precisely yield the anomaly cancelation conditions when acting on the one-loop
induced Chern-Simons terms in the three- and five-dimensional effective theory.
The arising symmetries are argued to play a key role in the study of the
M-theory to F-theory limit on Calabi-Yau manifolds. For example, using the fact
that all fully resolved F-theory geometries inducing multiple Abelian gauge
groups or non-Abelian groups admit a certain set of symmetries, we are able to
generally show the cancelation of pure Abelian or pure non-Abelian anomalies in
these models.Comment: 48 pages, 2 figures; v2: typos corrected, comments on circle fluxes
adde
Gauge Fluxes in F-theory and Type IIB Orientifolds
We provide a detailed correspondence between G_4 gauge fluxes in F-theory
compactifications with SU(n) and SU(n)x(1) gauge symmetry and their Type IIB
orientifold limit. Based on the resolution of the relevant F-theory Tate models
we classify the factorisable G_4-fluxes and match them with the set of
universal D5-tadpole free U(1)-fluxes in Type IIB. Where available, the global
version of the universal spectral cover flux corresponds to Type IIB gauge flux
associated with a massive diagonal U(1). In U(1)-restricted Tate models extra
massless abelian fluxes exist which are associated with specific linear
combinations of Type IIB fluxes. Key to a quantitative match between F-theory
and Type IIB is a proper treatment of the conifold singularity encountered in
the Sen limit of generic F-theory models. We also shed further light on the
brane recombination process relating generic and U(1)-restricted Tate models.Comment: 53 pages, 3 figures; v2: Refs added; v3: minor corrections to match
version published in JHE
Fluxes and Warping for Gauge Couplings in F-theory
We compute flux-dependent corrections in the four-dimensional F-theory
effective action using the M-theory dual description. In M-theory the 7-brane
fluxes are encoded by four-form flux and modify the background geometry and
Kaluza-Klein reduction ansatz. In particular, the flux sources a warp factor
which also depends on the torus directions of the compactification fourfold.
This dependence is crucial in the derivation of the four-dimensional action,
although the torus fiber is auxiliary in F-theory. In M-theory the 7-branes are
described by an infinite array of Taub-NUT spaces. We use the explicit metric
on this geometry to derive the locally corrected warp factor and M-theory
three-from as closed expressions. We focus on contributions to the 7-brane
gauge coupling function from this M-theory back-reaction and show that terms
quadratic in the internal seven-brane flux are induced. The real part of the
gauge coupling function is modified by the M-theory warp factor while the
imaginary part is corrected due to a modified M-theory three-form potential.
The obtained contributions match the known weak string coupling result, but
also yield additional terms suppressed at weak coupling. This shows that the
completion of the M-theory reduction opens the way to compute various
corrections in a genuine F-theory setting away from the weak string coupling
limit.Comment: 46 page
Massive Abelian Gauge Symmetries and Fluxes in F-theory
F-theory compactified on a Calabi-Yau fourfold naturally describes
non-Abelian gauge symmetries through the singularity structure of the elliptic
fibration. In contrast Abelian symmetries are more difficult to study because
of their inherently global nature. We argue that in general F-theory
compactifications there are massive Abelian symmetries, such as the uplift of
the Abelian part of the U(N) gauge group on D7-branes, that arise from
non-Kahler resolutions of the dual M-theory setup. The four-dimensional
F-theory vacuum with vanishing expectation values for the gauge fields
corresponds to the Calabi-Yau limit. We propose that fluxes that are turned on
along these U(1)s are uplifted to non-harmonic four-form fluxes. We derive the
effective four-dimensional gauged supergravity resulting from F-theory
compactifications in the presence of the Abelian gauge factors including the
effects of possible fluxes on the gauging, tadpoles and matter spectrum.Comment: 49 page
Open mirror symmetry for Pfaffian Calabi-Yau 3-folds
We investigate the open mirror symmetry of certain non-complete intersection
Calabi- Yau 3-folds, so called pfaffian Calabi-Yau. We perform the prediction
of the number of disk invariants of several examples by using the direct
integration method proposed recently and the open mirror symmetry. We treat
several pfaffian Calabi-Yau 3-folds in and branes with two
discrete vacua. Some models have the two special points in its moduli space,
around both of which we can consider different A-model mirror partners. We
compute disc invariants for both cases. This study is the first application of
the open mirror symmetry to the compact non-complete intersections in toric
variety.Comment: 64 pages; v2: typos corrected, minor changes, references added; v3:
published version, minor corrections and improvement
Toric Construction of Global F-Theory GUTs
We systematically construct a large number of compact Calabi-Yau fourfolds
which are suitable for F-theory model building. These elliptically fibered
Calabi-Yaus are complete intersections of two hypersurfaces in a six
dimensional ambient space. We first construct three-dimensional base manifolds
that are hypersurfaces in a toric ambient space. We search for divisors which
can support an F-theory GUT. The fourfolds are obtained as elliptic fibrations
over these base manifolds. We find that elementary conditions which are
motivated by F-theory GUTs lead to strong constraints on the geometry, which
significantly reduce the number of suitable models. The complete database of
models is available at http://hep.itp.tuwien.ac.at/f-theory/. We work out
several examples in more detail.Comment: 35 pages, references adde
Five-Brane Superpotentials, Blow-Up Geometries and SU(3) Structure Manifolds
We investigate the dynamics of space-time filling five-branes wrapped on
curves in heterotic and orientifold Calabi-Yau compactifications. We first
study the leading N=1 scalar potential on the infinite deformation space of the
brane-curve around a supersymmetric configuration. The higher order potential
is also determined by a brane superpotential which we compute for a subset of
light deformations. We argue that these deformations map to new complex
structure deformations of a non-Calabi-Yau manifold which is obtained by
blowing up the brane-curve into a four-cycle and by replacing the brane by
background fluxes. This translates the original brane-bulk system into a
unifying geometrical formulation. Using this blow-up geometry we compute the
complete set of open-closed Picard-Fuchs differential equations and identify
the brane superpotential at special points in the field space for five-branes
in toric Calabi-Yau hypersurfaces. This has an interpretation in open mirror
symmetry and enables us to list compact disk instanton invariants. As a first
step towards promoting the blow-up geometry to a supersymmetric heterotic
background we propose a non-Kaehler SU(3) structure and an identification of
the three-form flux.Comment: 95 pages, 4 figures; v2: Minor corrections, references update
U(n) Spectral Covers from Decomposition
We construct decomposed spectral covers for bundles on elliptically fibered
Calabi-Yau threefolds whose structure groups are S(U(1) x U(4)), S(U(2) x U(3))
and S(U(1) x U(1) x U(3)) in heterotic string compactifications. The
decomposition requires not only the tuning of the SU(5) spectral covers but
also the tuning of the complex structure moduli of the Calabi-Yau threefolds.
This configuration is translated to geometric data on F-theory side. We find
that the monodromy locus for two-cycles in K3 fibered Calabi-Yau fourfolds in a
stable degeneration limit is globally factorized with squared factors under the
decomposition conditions. This signals that the monodromy group is reduced and
there is a U(1) symmetry in a low energy effective field theory. To support
that, we explicitly check the reduction of a monodromy group in an appreciable
region of the moduli space for an gauge theory with (1+2) decomposition.
This may provide a systematic way for constructing F-theory models with U(1)
symmetries.Comment: 41 pages, 14 figures; v2: minor improvements and a reference adde
Hypermoduli Stabilization, Flux Attractors, and Generating Functions
We study stabilization of hypermoduli with emphasis on the effects of
generalized fluxes. We find a class of no-scale vacua described by ISD
conditions even in the presence of geometric flux. The associated flux
attractor equations can be integrated by a generating function with the
property that the hypermoduli are determined by a simple extremization
principle. We work out several orbifold examples where all vector moduli and
many hypermoduli are stabilized, with VEVs given explicitly in terms of fluxes.Comment: 45 pages, no figures; Version submitted to JHE
- …
