1,663 research outputs found

    PedVis: A Structured, Space-Efficient Technique for Pedigree Visualization

    Full text link

    Problem areas in the use of the firefly luciferase assay for bacterial detection

    Get PDF
    By purifying the firefly luciferase extract and adding all necessary chemicals but ATP in excess, an assay for ATP was performed by measuring the amount of light produced when a sample containing soluble ATP is added to the luciferase reaction mixture. Instrumentation, applications, and basic characteristics of the luciferase assay are presented. Effect of the growth medium and length of time grown in this medium on ATP per viable E. coli values is shown in graphic form, along with an ATP concentration curve showing relative light units versus ATP injected. Reagent functions and concentration methods are explored. Efforts to develop a fast automatable system to detect the presence of bacteria in biological fluids, especially urine, resulted in the optimization of procedures for use with different types of samples

    Application of firefly luciferase assay for adenosine triphosphate (ATP) to antimicrobial drug sensitivity testing

    Get PDF
    The development of a rapid method for determining microbial susceptibilities to antibiotics using the firefly luciferase assay for adenosine triphosphate (ATP) is documented. The reduction of bacterial ATP by an antimicrobial agent was determined to be a valid measure of drug effect in most cases. The effect of 12 antibiotics on 8 different bacterial species gave a 94 percent correlation with the standard Kirby-Buer-Agar disc diffusion method. A 93 percent correlation was obtained when the ATP assay method was applied directly to 50 urine specimens from patients with urinary tract infections. Urine samples were centrifuged first to that bacterial pellets could be suspended in broth. No primary isolation or subculturing was required. Mixed cultures in which one species was predominant gave accurate results for the most abundant organism. Since the method is based on an increase in bacterial ATP with time, the presence of leukocytes did not interfere with the interpretation of results. Both the incubation procedure and the ATP assays are compatible with automation

    Status of NASA's Advanced Radioisotope Power Conversion Technology Research and Development

    Get PDF
    NASA s Advanced Radioisotope Power Systems (RPS) development program is funding the advancement of next generation power conversion technologies that will enable future missions that have requirements that can not be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power Systems (RPS). Requirements of advanced radioisotope power systems include high efficiency and high specific power (watts/kilogram) in order to meet mission requirements with less radioisotope fuel and lower mass. Other Advanced RPS development goals include long-life, reliability, and scalability so that these systems can meet requirements for a variety of future space applications including continual operation surface missions, outer-planetary missions, and solar probe. This paper provides an update on the Radioisotope Power Conversion Technology Project which awarded ten Phase I contracts for research and development of a variety of power conversion technologies consisting of Brayton, Stirling, thermoelectrics, and thermophotovoltaics. Three of the contracts continue during the current Phase II in the areas of thermoelectric and Stirling power conversion. The accomplishments to date of the contractors, project plans, and status will be summarized

    Discussion of Recent Decisions

    Get PDF

    The NASA Auralization Framework and Plugin Architecture

    Get PDF
    NASA has a long history of investigating human response to aircraft flyover noise and in recent years has developed a capability to fully auralize the noise of aircraft during their design. This capability is particularly useful for unconventional designs with noise signatures significantly different from the current fleet. To that end, a flexible software architecture has been developed to facilitate rapid integration of new simulation techniques for noise source synthesis and propagation, and to foster collaboration amongst researchers through a common releasable code base. The NASA Auralization Framework (NAF) is a skeletal framework written in C++ with basic functionalities and a plugin architecture that allows users to mix and match NAF capabilities with their own methods through the development and use of dynamically linked libraries. This paper presents the NAF software architecture and discusses several advanced auralization techniques that have been implemented as plugins to the framework

    Discussion of Recent Decisions

    Get PDF
    • …
    corecore