12 research outputs found

    Land cover classification with multi-sensor fusion of partly missing data

    Get PDF
    We describe a system that uses decision tree-based tools for seamless acquisition of knowledge for classification of remotely sensed imagery. We concentrate on three important problems in this process: information fusion, model understandability, and handling of missing data. Importance of multi-sensor information fusion and the use of decision tree classifiers for such problems have been well-studied in the literature. However, these studies have been limited to the cases where all data sources have a full coverage for the scene under consideration. Our contribution in this paper is to show how decision tree classifiers can be learned with alternative (surrogate) decision nodes and result in models that are capable of dealing with missing data during both training and classification to handle cases where one or more measurements do not exist for some locations. We present detailed performance evaluation regarding the effectiveness of these classifiers for information fusion and feature selection, and study three different methods for handling missing data in comparative experiments. The results show that surrogate decisions incorporated into decision tree classifiers provide powerful models for fusing information from different data layers while being robust to missing data. © 2009 American Society for Photogrammetry and Remote Sensing

    Interactive training of advanced classifiers for mining remote sensing image archives

    Get PDF
    Advances in satellite technology and availability of down-loaded images constantly increase the sizes of remote sensing image archives. Automatic content extraction, classification and content-based retrieval have become highly desired goals for the development of intelligent remote sensing databases. The common approach for mining these databases uses rules created by analysts. However, incorporating GIS information and human expert knowledge with digital image processing improves remote sensing image analysis. We developed a system that uses decision tree classifiers for interactive learning of land cover models and mining of image archives. Decision trees provide a promising solution for this problem because they can operate on both numerical (continuous) and categorical (discrete) data sources, and they do not require any assumptions about neither the distributions nor the independence of attribute values. This is especially important for the fusion of measurements from different sources like spectral data, DEM data and other ancillary GIS data. Furthermore, using surrogate splits provides the capability of dealing with missing data during both training and classification, and enables handling instrument malfunctions or the cases where one or more measurements do not exist for some locations. Quantitative and qualitative performance evaluation showed that decision trees provide powerful tools for modeling both pixel and region contents of images and mining of remote sensing image archives

    Learning bayesian classifiers for scene classification with a visual grammar

    No full text
    A challenging problem in image content extraction and classification is building a system that automatically learns high-level semantic interpretations of images. We describe a Bayesian framework for a visual grammar that aims to reduce the gap between low-level features and high-level user semantics. Our approach includes modeling image pixels using automatic fusion of their spectral, textural, and other ancillary attributes; segmentation of image regions using an iterative split-and-merge algorithm; and representing scenes by decomposing them into prototype regions and modeling the interactions between these regions in terms of their spatial relationships. Naive Bayes classifiers are used in the learning of models for region segmentation and classification using positive and negative examples for user-defined semantic land cover labels. The system also automatically learns representative region groups that can distinguish different scenes and builds visual grammar models. Experiments using Landsat scenes show that the visual grammar enables creation of high-level classes that cannot be modeled by individual pixels or regions. Furthermore, learning of the classifiers requires only a few training examples. © 2005 IEEE

    Learning bayesian classifiers for scene classification with a visual grammar

    No full text

    The politics of platform capitalism: A case study on the regulation of Uber in New York

    No full text
    First published online: 14 August 2020Platform companies like Uber not only disrupt existing markets but also contest existing regulatory regimes. This raises the question of how, when, and why such companies are regulated. This article develops, tests, and defends a theoretical framework that explains the politics of regulatory response to the rise of platform capitalism. Using discourse network analysis and a case study on the regulation of Uber in New York, it shows that the success or failure of regulations depends on the ability of actors to mobilize broad coalition; that narratives affect the composition of these coalitions; and that platform companies have both unique political strengths and vulnerabilities. This article makes substantive contributions to our understanding of the politics of platform capitalism, and it makes theoretical contributions to the literature studies on coalitional politics, ideational institutionalism, and business power
    corecore