
Abstract
We describe a system that uses decision tree-based tools
for seamless acquisition of knowledge for classification of
remotely sensed imagery. We concentrate on three impor-
tant problems in this process: information fusion, model
understandability, and handling of missing data. Impor-
tance of multi-sensor information fusion and the use of
decision tree classifiers for such problems have been well-
studied in the literature. However, these studies have been
limited to the cases where all data sources have a full
coverage for the scene under consideration. Our contribu-
tion in this paper is to show how decision tree classifiers
can be learned with alternative (surrogate) decision nodes
and result in models that are capable of dealing with
missing data during both training and classification to
handle cases where one or more measurements do not exist
for some locations. We present detailed performance
evaluation regarding the effectiveness of these classifiers
for information fusion and feature selection, and study
three different methods for handling missing data in
comparative experiments. The results show that surrogate
decisions incorporated into decision tree classifiers provide
powerful models for fusing information from different data
layers while being robust to missing data.

Introduction
State-of-the-art remote sensing image analysis systems aid
users by providing classification tools that use spectral
information and possibly ancillary features as the input for
statistical classifiers that are built using unsupervised or
supervised algorithms. The tools that are based on maximum
likelihood classification using parametric density models such
as the Gaussian have the risk of failing to model the data
adequately because complex features may not have such
distributions. On the other hand, tools such as neural net-
work classifiers or support vector machines that do not need
any parametric density assumption require the user tune
several magic parameters that are very much data dependent
and are not always intuitive to select. Furthermore, most of
these classifiers are used as black boxes that are evaluated by
either visual inspection or statistical validation of the results
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using limited ground truth, and do not necessarily provide
any means for understandability of the mapping from the
input data to the output classification models.

Like any data analysis problem, domain knowledge and
prior information are very useful in land-cover/land-use
classification. Incorporating supplemental GIS information and
human expert knowledge into digital image processing has
long been acknowledged as a necessity for improving remote
sensing image analysis (Huang and Jensen, 1997). Artificial
intelligence research and developments in rule-based classifi-
cation systems have enabled a computer to mimic the heuris-
tics and knowledge that a human expert uses in interpreting
an image so that both computationally powerful and semanti-
cally understandable classification models are developed.

Consequently, rule-based classification systems (Langley
and Simon, 1995) have been successfully used in applications
such as land-cover/land-use classification (Ton et al., 1991;
Baraldi and Parmiggiani, 1994; Huang and Jensen, 1997;
de Fries et al., 1998; Lawrence and Wright, 2001; Bardossy
and Samaniego, 2002; Debeir et al., 2002), land-cover change
monitoring (Wang, 1993; Rogan et al., 2003), aerial image
interpretation (McKeown, Jr. et al., 1985), sea ice classification
(Soh et al., 2004), tree classification for analyzing the effects
of urbanization (Sugumaran et al., 2003), and ridge line
extraction from Digital Elevation Model (DEM) data (Musavi et
al., 1999). These approaches used rule-based classification
with only spectral data (Ton et al., 1991; Bardossy and
Samaniego, 2002; Sugumaran et al., 2003) as well as for
information fusion from both spectral and ancillary data
(Huang and Jensen, 1997; de Fries et al., 1998; Lawrence and
Wright, 2001; Debeir et al., 2002; Rogan et al., 2003). Rule-
based classifiers are particularly suitable for information
fusion using different data modalities because conditions in
rules correspond to ranges for numerical (continuous) data
and set operations for categorical (discrete) data, and these
conditions can be easily combined using Boolean operations.

However, a common problem in all of these attempts has
been the translation of expert knowledge to a computer-
usable format. Today, several commercial-of-the-shelf remote
sensing image analysis systems have rule-based classification
modules, but they operate on individual scenes and require
an expert to create the rules. Even though rules constructed
by experts may work well for particular cases (Ton et al.,
1991; Wang, 1993; Soh et al., 2004), the requirement for an
enormous amount of manual processing even for small data
sets makes knowledge discovery in large remote sensing
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archives practically impossible. Furthermore, the use of these
classifiers for information fusion has been limited to the cases
where all data bands from all data sources are available for
the scene under consideration, because the manually con-
structed rules do not explicitly handle missing data in the
measurements. The most popular alternative to the manual
approach has been to use decision tree classifiers (Huang and
Jensen, 1997; de Fries et al., 1998; Lawrence and Wright,
2001; Debeir et al., 2002; Rogan et al., 2003; Sugumaran et
al., 2003). However, portability and applicability of these
approaches to large and diverse data sets are still limited due
to the manual involvement in the data preparation, rule
creation, and final classification steps.

This paper describes our work on developing decision
tree-based tools to automate the process of acquiring knowl-
edge for analysis and classification of remotely sensed
imagery. In this paper, we concentrate on three important
problems in remote sensing image analysis: information
fusion, model understandability, and handling of missing
data. First of all, the non-parametric nature of decision tree
classifiers that can operate on both numerical (continuous)
and categorical (discrete) measurements without any assump-
tions about neither the distributions nor the independence
of attribute values enables training of customized semantic
land-cover/land-use labels from a fusion of visual and
ancillary attributes. This is especially important for the
fusion of measurements from different information sources.
Secondly, a straightforward process of rendering the informa-
tion in decision trees as logical expressions leads to decision
rules for a knowledge base that consists of human readable
classification models. Furthermore, the decision tree learning
algorithms automatically perform feature selection by using
only the attributes that can partition the measurement space
the most effectively, and the resulting models are also often
easy to interpret by creating subgroups of data which the
user may graphically analyze. Finally, decision trees can be
learned with alternative (surrogate) decision nodes, and this
brings the capability of dealing with missing data during
both training and classification to handle the cases where
one or more measurements do not exist for some locations.

Decision tree classifiers and information fusion have
both been extensively studied in the remote sensing
literature. However, these studies have been limited to the
cases where all data sources have a full coverage for the
scene under consideration. On the other hand, presence of
missing data is an important problem in statistical model-
ing and analysis. There are several possible reasons for a
value to be missing, such as: it was not measured; there
was an instrument malfunction; the attribute does not
apply; or the attribute’s value cannot be known. This is
also an important problem in multi-temporal and multi-
sensor remote sensing image analysis where one or more
data bands may be completely missing due to transmission
problems, or there may be gaps in coverage of some of the
sensors for particular regions at particular times (as can be
seen in the coverage of our test data in Figure 1) because of
satellite orbit restrictions, heavy clouds, haze or other
atmospheric conditions, and viewing and illumination
geometry.

Most algorithms “deal” with missing data by ignoring
patterns with incomplete measurements (Little, 1978).
Unless the relative amount of missing data is small, this is
quite wasteful because remote sensing data are often hard
and expensive to obtain. Furthermore, such discarding of
patterns may also lead to valuable labeled data (ground
truth) being thrown away, and may cause additional issues
such as small sample size problems during training and
adverse effects on the statistical significance of error rates
during performance evaluation.

Our contribution in this paper is to show how decision
tree classifiers can be learned with alternative (surrogate)
decision nodes and result in models that are capable of
dealing with missing data during both training and classifi-
cation to handle cases where one or more measurements
do not exist for some locations. We compare the perform-
ance of the proposed classifiers to several other classifiers
from the literature, and also evaluate the performance of
three different methods for handling missing data. The rest
of the paper is organized as follows. The multi-source data
set that consists of spectral and textural values obtained
from different aerial and satellite sensors with different
coverages and resolutions is presented in the next section.
The classifiers used for land-cover/land-use modeling
are described followed by several methods for handling
missing data. Performance evaluation using the multi-source
data set is then presented followed by Conclusions.

Multi-source Data and Feature Extraction
The VISIMINE system (Koperski et al., 2002) we have developed
supports interactive classification and retrieval of remote
sensing images by modeling them on pixel, region, and
scene levels. The system consists of a geospatial data
input/output library, a relational database management system,
image processing, statistics, machine learning and data
mining libraries, and a graphical user interface. The inputs
to the system are raw images and ancillary data. These
data are automatically processed by unsupervised algorithms
in the image processing library for feature extraction.
Original data and extracted features become the input to the
classification algorithms in the machine learning library.
The user interacts with the system by providing a list of 
land-cover/land-use labels and corresponding training
examples. The models learned from these examples can be
used to classify other images in the same data set, or can
be used to search other collections for similar scene structures.

The image data used in this paper consist of:

• Aerial (2 m/pixel ground resolution, three bands, one
byte/pixel/band),

• Ikonos (4 m/pixel ground resolution, four bands, two
bytes/pixel/band, two sets),

• DEM (30 m/pixel ground resolution, one band, two
bytes/pixel/band)

data layers that cover the Fort A.P. Hill area in Virginia, USA,
and were provided by the U.S. Army Topographic Engineer-
ing Center. These layers were converted to the same projec-
tion (WGS84, UTM Zone18) and were up-sampled (using
nearest-neighbor interpolation of pixel values) to the same
resolution (2 m) where each band has 11,683 � 11,677 pixels.

As additional ancillary data, we extracted Gabor wavelet
features (Haley and Manjunath, 1999) for micro-texture
analysis on several Aerial and Ikonos bands. Gabor features
were computed by filtering a particular spectral band with
Gabor wavelet kernels at different scales and orientations.
We used kernels rotated by np/8, n � 0, . . . ,7, at two scales.
To obtain rotation invariant features, we computed the auto-
correlation of the wavelet filter outputs with 0 and 90 degree
phase differences at each scale. This resulted in four bands
corresponding to two phase differences for each of the two
scales. As a result, the extracted Gabor features correspond to:

• First band (red) of Aerial data (four texture bands, eight
bytes/pixel/band),

• Second band (green) of Aerial data (four texture bands, eight
bytes/pixel/band),

• First band of Ikonos data (four texture bands, eight
bytes/pixel/band),
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Figure 1. Data for the Fort A.P. Hill scene used in the experiments: (a) Aerial data (�391 sq. km.
coverage), (b) DEM data (�504 sq. km. coverage), (c) Ikonos2 data (�123 sq. km. coverage), and
(d) Ikonos3 data  (�101 sq. km. coverage). Note that each data layer has a different coverage of
the same scene. The black pixels indicate missing data for that layer in that area. The black (red)
polygon marks the common coverage area  (�29 sq. km.). (The labels Ikonos2 and Ikonos3 in
(c) and (d) are just the names of the corresponding data sets. These sets were obtained from the
same sensor.) A color version of this figure is available at the ASPRS website: www.asprs.org.

• Fourth band (near infrared) of Ikonos data (four texture
bands, eight bytes/pixel/band).

The total size of the data (28 bands) is about 12 GB.
Some of the data layers and their coverages are shown
in Figure 1. The ground truth, which was also provided
by the U.S. Army Topographic Engineering Center, includes
11 pixel level land-cover/land-use labels (classes) with
independent training and testing data described in Table 1.

Decision Tree Classifiers and Information Fusion
This section describes the algorithms used in our decision tree
classifier implementation and the details necessary for the
description of the missing data handling methods.

Decision Tree Learning
Decision trees are non-parametric tools that are used to
predict a categorical response (class) based on a collection of
predictors (attributes, features). The fundamental principle
underlying tree creation is that of simplicity. Each node in
the tree includes a condition that splits (partitions) the data
into groups. For a binary tree, the conditions are of the form
“is x � D” where x is a particular attribute and D is a subset
of the measurement space for that attribute. The cases for
which the answer is “yes” belong to the branch representing
set D, whereas the other cases go to the complement set -D.
The preferred split condition makes the data reaching the
immediate descendant nodes as “pure” as possible.

Decision trees can be built by recursively partitioning
the training data where split functions are used to estimate
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TABLE 1. LAND-COVER/LAND-USE CLASSES AND THE NUMBER OF TRAINING AND TESTING EXAMPLES USED IN

THE EXPERIMENTS. THESE TRAINING AND TESTING EXAMPLES WERE GENERATED BY TWO PEOPLE USING THE

GROUND CONTROL POINTS WITHIN THE ORIGINAL GROUND TRUTH DATA. THE DIFFERENCES IN THE NUMBER OF

EXAMPLES FOR DIFFERENT CLASSES ARE CAUSED BY THESE LABELINGS BY DIFFERENT PEOPLE AND DO NOT

HAVE ANY SIGNIFICANT MEANING RELATED TO THE DATA. THESE NUMBERS ARE PRESENTED AS TWO

SEPARATE COLUMNS FOR THE SUBSET THAT HAS FULL COVERAGE FOR ALL DATA SOURCES (SHOWN USING

THE “RED” POLYGON IN FIGURE 1) AND THE WHOLE DATA THAT CONTAIN MANY MISSING PARTS. EACH

CLASS IS REPRESENTED BY THE CORRESPONDING COLOR IN THE FIGURES IN THE REST OF THE PAPER

Land-cover/
# training examples # testing examples

Land-use Color subset whole subset whole

burned 0 145 0 456
paved 188 91 80 536
building 17 664 93 427
ground 2,521 2,434 752 2,442
crop 0 9,433 0 49,765
grass 5,747 7,223 7,632 15,329
brush 1,565 3,117 2,292 7,170
pine 21,544 11,284 19,543 60,669
deciduous 10,942 10,409 4,936 59,511
water 9,130 14,275 8,194 41,502
marsh/wetland 2,233 7,204 3,589 8,097

Total 53,887 66,279 47,111 245,904

the impurities for partitioning. Let f be some impurity
function and define the impurity of node A as:

(1)

where pAi is the proportion of the training examples at node
A that belong to class i and m is the number of classes.
A requirement for f is that I(A) � 0 when A is pure and it
achieves the largest value if all classes occur with equal
frequency at that node. We use the entropy f(p) � �p log(p)
and the Gini f(p) � p(1 � p) functions for quantifying
impurity (Therneau and Atkinson, 1999). The best split is
defined to be the one that gives the maximal impurity
reduction:

(2)

where AL and AR are the left and right children of node
A and P(�) is the probability of a node. In Equation 2, the
probability of node A can be computed as:

(3)

where pi is the prior probability for class i. Probabilities for
AL and AR are computed similarly. Given the training data,
the partitioning algorithm searches through the attributes
one by one and for each attribute finds the best split. Then,
it compares the best single attribute splits and selects the
best of the best. Next, the data are separated into two using
that split, and this process is recursively applied to each
subgroup until the subgroups either reach a minimum size
or until no improvement can be made. Once the leaf nodes
are found, they are labeled by the class that has the most
patterns represented. The confidence value for that class is
computed as the ratio of the training patterns that belong to
that class to the total number of patterns in that node.

Tree-based tools have been considered as promising
solutions for the information fusion problem in multi-
source remote sensing with sources such as spectral data,
DEM data and other ancillary GIS data because they can
operate on both numerical (continuous) and categorical

P(A) � g

m

i�1
pi pAi

¢I � P(A)I(A) � P(AL)I(AL) � P(AR)I(AR)

I (A) � g

m

i�1
f (pAi)

(discrete) measurements. The split conditions on numeri-
cal attributes are based on ranges of the measurement
domain (e.g., “is x � x0”), whereas the conditions on
categorical attributes are based on subsets of the possible
attribute values (e.g., “is x � { . . . }”). To decrease the
computational load of the search procedure described
above, we do randomized selection of candidate thresholds
to find the split conditions for numerical attributes and
consider randomized subsets of attribute values for
categorical ones. Once the attributes are independently
analyzed and the corresponding split conditions are found
for each node of the decision tree, Boolean operations are
used to combine these conditions and fuse the correspon-
ding data modalities.

The resulting models are also often easy to interpret,
even by those with no statistical expertise, by creating
subgroups of data which the user may graphically analyze.
Furthermore, they automatically perform feature selection
during the searching phase of the splitting process using Gini
or entropy selection criteria by using only the attributes that
can partition the measurement space the most effectively.
In particular, we use the predictor importance criterion
which is measured for each data band (attribute) as the total
reduction in the split criterion achieved by that band
(attribute). An important attribute is defined as the one that
maximizes the reduction in impurity given in Equation 2 as
much as possible for as many nodes as possible. Therefore,
given the impurity reduction values in Equation 2 for the
attributes selected for each node in the tree, the overall
importance value for a particular attribute is computed by
summing the corresponding values in all nodes. The actual
values of this criterion are not so important, but the relative
sizes give an indication of the comparative utility of each
attribute (Therneau and Atkinson, 1999).

Finally, depending on the threshold on the number
of patterns at leaf nodes, the resulting tree can become
a very extensive one that will actually classify the training
samples perfectly but may have little generalization ability
in classifying new observations (overfitting problem).
To prevent such behavior and achieve good generalization
ability, we use automatic pruning of trees based on error
predictions and cost-complexity measures. In pruning, a tree
with good classification accuracy on training data is fully
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grown until leaf nodes have minimum size and minimum
impurity. Then, the leaf nodes are successively deleted until
a smaller tree with similar accuracy is obtained. We use
cross-correlation to estimate the classification error during
pruning. Trees can also be pruned using the cost complexity
measure:

C(T,a)=R(T )+à T̀ (4)

where T represents a tree, R(T) is the misclassification cost
of T, and T̀` is the number of leaf nodes in T. a acts as a
penalty factor for the complexity of the tree. This cost-
complexity measure C can be used to create a nested
sequence of trees ordered according to their C values and
cross-validation can be used to select the best tree from this
sequence. Classifier ensembles that use bootstrap aggregation
(bagging) with multiple feature subsets (Debeir et al., 2002),
also called as random forests (Breiman, 2001), can alterna-
tively be used for improving accuracy and generalization
ability but we use single decision trees in this work to
maintain straightforward interpretability of the classification
models by the users.

Conversion of Trees into Rules
At any time of the learning process, decision trees can be
automatically converted to decision rules. This can be done
by tracing the tree from the root node to each leaf node and
forming logical expressions that make the initial set of rules.
Occasionally, some of these rules can be redundant and can
be simplified without affecting the classification accuracy.
We investigate the following schemes for rule generalization:

• Lossless generalization where conditions that are com-
pletely redundant with respect to other conditions are
removed. Redundancy is determined according to the
intersection of decision regions, and complete redundancy
occurs when a decision region for a particular attribute is
covered by another decision region for the same attribute in
the same rule.

• Lossy generalization where conditions are removed using
greedy elimination. This is done by comparing error
estimates of the original rule and the resulting rule with one
of the conditions deleted. If the error rate for the latter case
is no higher than that of the original rule, that condition is
deleted. We use the pessimistic error estimate (Quinlan,
1993) where, given a confidence level, the upper limit on
the probability of error is computed using the confidence
limits for the Binomial distribution.

We also further simplify the rules by deleting the ones
that have error estimates that are greater than the error
estimate for the default rule. The default rule is used to
assign the observations that do not satisfy any rule to the
class with the highest frequency in the training data.

Examples of rule generalization are given below. Among
the features used to construct these rules, FINE0DEG and
COARSE0DEG are Gabor features computed from AERIAL
data, ELEVATION is obtained from DEM data, and the
integers given in curly brackets are the cluster IDs obtained
by unsupervised clustering of the AERIAL data.

Example 1
(*) represents conditions removed based on error estimate,
(**) represents conditions redundant with regard to
ELEVATION � 5.5.

non-generalized rule:
IF AERIAL_GABOR::FINE0DEG �� 66.3421 (*)

AND AERIAL_GABOR::COARSE0DEG � 253.842 (*)
AND AERIAL::BAND1 � 142.5 (*)
AND AERIAL::BAND2 � 76.5 (*)
AND DEM::ELEVATION � 50.5 (**)

AND DEM::ELEVATION � 10 (**)
AND DEM::ELEVATION � 5.5
THEN CLASS water WITH PROB 1

generalized rule:
IF DEM::ELEVATION � 5.5
THEN CLASS water WITH PROB 0.99923

Example 2
(*) represents conditions removed based on error estimate,
(**) represents conditions redundant with regard to
ELEVATION � 35.5.

non-generalized rule:
IF AERIAL_GABOR::FINE0DEG �� 66.3421 (*)

AND AERIAL_GABOR::COARSE0DEG �� 253.842 (*)
AND AERIAL::CLUSTERID in {10–11,13,15–22}
AND DEM::ELEVATION � 45.5 (**)
AND AERIAL_GABOR::COARSE0DEG � 488.451
AND DEM::ELEVATION � 35.5
AND DEM::ELEVATION �� 32.5

THEN CLASS water WITH PROB 0.892006

generalized rule:
IF AERIAL::CLUSTERID in {10–11,13,15–22}

AND AERIAL_GABOR::COARSE0DEG � 488.451
AND DEM::ELEVATION � 35.5
AND DEM::ELEVATION �� 32.5

THEN CLASS water WITH PROB 0.925682

Example 3
(*) represents conditions removed based on error estimate,
(**) represents conditions redundant with regard to
COARSE0DEG �� 476.393.

non-generalized rule:
IF AERIAL_GABOR::FINE0DEG �� 66.3421 (*)

AND AERIAL_GABOR::COARSE0DEG �� 253.842 (**)
AND AERIAL::CLUSTERID in {10–11,13,15–22} (*)
AND DEM::ELEVATION �� 45.5 (*)
AND AERIAL_GABOR::COARSE0DEG �� 476.393
AND DEM::ELEVATION � 60.5

THEN CLASS deciduous WITH PROB 0.666667

generalized rule:
IF AERIAL_GABOR::COARSE0DEG �� 476.393

AND DEM::ELEVATION � 60.5
THEN CLASS deciduous WITH PROB 0.85664

Decision trees always give sets of mutually exclusive
rules. However, rules may not stay mutually exclusive after
the rule generalization process (lossy generalization step). To
avoid conflicts, we sort the rules in descending order of the
probability (confidence) values. If an observation satisfies
none of the rules, it is assigned to the default class that
appears the most frequently in the training set.

Handling of Missing Data
Presence of missing data is an important problem in multi-
temporal and multi-sensor remote sensing image analysis
where one or more data bands may be completely missing
due to transmission problems, or there may be gaps in
coverage of some of the sensors for particular regions at
particular times because of satellite orbit restrictions, heavy
clouds, haze or other atmospheric conditions, and viewing
and illumination geometry. However, most algorithms
“deal” with missing data by ignoring patterns with incom-
plete measurements and can work only on small scenes
where complete data are available. This limits the use of
multi-source data and hinders the exploitation of the
complementary information inherent in such data.

Unless the relative amount of missing data is small, this
is quite wasteful because remote sensing data are often hard
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and expensive to obtain. Alternative techniques for handling
missing data either impute all missing values before training
or rely on the learning algorithm to deal with missing
values in its training phase. These techniques are usually
based on the assumption that the mechanism that results in
the omission of a data point is independent of that point’s
unobserved value. In particular, the data are assumed to be
either missing at random (i.e., the distribution of which data
points are missing depends on the complete data only
through the observed data points) or missing completely at
random (i.e., the distribution of which data points are
missing does not depend on the observed or missing data)
(Hastie et al., 2001).

A common technique for handling missing data is
to make the calculations using only the attribute informa-
tion present so that any pattern with at least one observed
attribute will participate in training. When the learning
algorithm involves estimation of parameters such as means
and covariances, this corresponds to using only those
observations for which measurements have been made
on the relevant variables. Thus, the estimates for different
attributes depend on different numbers of samples. How-
ever, this can give poor results and may produce covari-
ance matrices that are not positive definite (Webb, 2002).
An alternative ad hoc solution is to replace a missing
attribute by the mean or median of the non-missing values
for that attribute, and treat it as if it was actually observed.
A predictive model can also be estimated from the training
patterns that are not missing a particular attribute, and a
missing value can be imputed by its prediction from that
model (Dixon, 1979; Little, 1978; Ghahramani and Jordan,
1994; Hastie et al., 2001). However, these imputations can
bias and distort the marginal distributions of the attributes
(Little, 1978). In addition, most of the existing solutions to
the missing data problem assume that the training data are
uncorrupted and missing values only in the test cases can
be handled, thus potentially valuable data are neglected
during training (Juszczak and Duin, 2004).

Classification models that can handle missing data
during both training and application (test) phases have a
high potential of making important contributions to remote
sensing image analysis. We discuss three separate methods
for handling missing data below. The first one is specific to
decision tree classifiers whereas the other two can be used
with any classifier.

Surrogate Splits
In our system, any observation with a class label and a
value for at least one of the attributes participates in train-
ing. To find the primary decision attribute and the corre-
sponding split at a particular node, the criterion to be
maximized is still Equation 2 where the first term is the
same irrespective of missing data but the right two terms
must be modified when there are incomplete observations
(Therneau and Atkinson, 1999). For a particular attribute
that is missing in some of the observations, first, the impu-
rity values I(AL) and I(AR) and the probabilities P(AL) and
P(AR) are all computed over the observations that are not
missing that attribute. Then, the probability values are
adjusted so that they sum to P(A).

The procedure in the previous paragraph takes care of
missing data during training. To be able to cope with missing
data during the application of the classifier, the decision
tree is extended using surrogate splits during training. The
idea behind surrogate splits is to use the primary decision
attribute at a node whenever possible, and use alternative
attributes when the pattern is missing the primary attribute.
This can be achieved by an ordered set of surrogate splits for
each non-leaf node (Breiman et al., 1984; Duda et al., 2000).

Given the attribute that maximizes the impurity reduc-
tion in Equation 2 as the primary split at a node, the first
surrogate split maximizes the probability of making the same
decision as the primary split, i.e., the number of patterns
that are sent to the same descendant branches by both the
primary split and the surrogate split is as high as possible.
Other surrogate splits are defined similarly and are ranked
according to their misclassification errors. In addition to the
surrogate splits, a blind rule called “go with the majority” is
also evaluated. This rule chooses the descendant branch that
received most of the training patterns. The surrogate splits
that are stored for a particular node are the ones that do
better than the blind rule in terms of classification accuracy.
During the application phase, if a test pattern is missing the
primary decision attribute at a node, it is classified using the
first surrogate split, or if it is also missing that, the second
surrogate is used, etc. If a pattern is missing all surrogate
attributes, the blind rule is used, i.e., it is sent to the
descendant node that received most of the training patterns
(this is actually expected to be a very rare case).

Nearest Neighbor Imputation
As described above, imputation methods provide ad hoc
solutions to the missing data problem. In our nearest
neighbor imputation implementation, we take the subset of
training data that contains only the patterns where all
attributes are available (no missing data), and substitute the
test data to create a full space of features where missing
values are replaced by the corresponding values from the
nearest neighbor of the test pattern in the training set.
The nearest neighbor of a test pattern in the feature space
is found according to the Euclidean distance between the
corresponding feature vectors where only the non-missing
features are used in the distance computation.

One-class Classifiers
An alternative method that can be applied to any classifier
is to use a combination of one-class classifiers. The goal
of one-class classification (Tax, 2001) is to accurately
describe one class of patterns (called the target class)
against the rest of the patterns (called outliers). Many
standard pattern recognition techniques tackle this type of
problem using two-class classifiers. Since these techniques
require complete descriptions of both classes, they may
not generalize well for the diverse (outlier) class. On the
other hand, one-class classifiers try to overcome this
problem by modeling only the target class and assuming a
low uniform distribution for the outlier class.

After a probability density is estimated using the
training patterns of the target class, a threshold is set on the
tails of this distribution and a specified amount of the target
data is rejected. This results in a decision boundary that
separates the target class from the rest in the feature space.

One-class classifiers can be used to handle missing data
as follows (Juszczak and Duin, 2004). First, individual one-
class classifiers that use a single attribute at a time are
trained. The resulting number of classifiers is dm where d is
the number of attributes, and m is the number of classes.
This keeps the number of required classifiers at a reasonable
level as opposed to the alternatives such as training two-
class classifiers on all possible combinations of attributes 

(resulting in classifiers) or training one-

class classifiers on all possible combinations of attributes
(resulting in (2d � 1)m classifiers). Then, during testing, the
individual decisions by the classifiers corresponding to the
available (non-missing) attributes are combined using
Bayesian combination rules (Kittler et al., 1998). For these

(2d � 1)
m(m � 1)

2
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Figure 2. Graphical user interface for training classifiers. The panel on top-left shows the 
land-cover/land-use classes defined by the user. The user can add new classes or remove existing
ones, and can also change the color of a class. The panel on bottom-left shows the data layers used
in training. The user can add or remove layers at any time of the training process, and examine the
difference in classification results using the previously given training examples. Double-clicking on a
data layer shows that layer on the left image panel. The “load tile” button loads a new image for
training and/or classification. The “update” button shows the probability map for an individual class
or the classification map for selected classes on the right image panel. The “undo” button removes
the latest example submitted to the classifier. The “show info” button displays information about the
trained classifier. The “show tree” and “show rules” buttons open the tree and rule displays,
respectively. A color version of this figure is available at the ASPRS website: www.asprs.org.

combinations, first, the posterior probabilities P(j ƒxi) are
estimated for classes j � 1, . . . ,m using individual
attributes xi where x � (x1, x2, . . . , xd)T is the full attribute
vector. Then, as the final classification decision, a pattern x
is assigned to class j* where:

(5)

using the product combination rule that simplifies the full
posterior probability by assuming that the attributes are
conditionally statistically independent, or:

(6)

using the sum combination rule that approximates the full
posterior probability by assuming that the individual
posterior probabilities do not deviate dramatically from the
prior probabilities (Kittler et al., 1998). In both Equations 5
and 6, the product and sum are computed using only the
available (non-missing) attributes.

Performance Evaluation
We evaluated the performance of the system using the
Aerial, Ikonos, DEM, and Gabor data layers (consisting
of a total of 28 bands in eight images) previously

j * � arg max
m

j�1  a
iH{available
attributes}

P(j ƒ  xi)

j * � arg max
m

j�1
 q
 

iH{available
attributes}

P(j ƒ  xi)

described. Training of the classifiers is done using the
graphical user interface shown in Figure 2 that allows
users to add both training and testing (ground truth)
examples. The user can view the color composite image or
individual data bands while entering examples in the
training display. At any time of the learning process, the
user can view the current classification model as shown in
Figure 3, and can validate it with the ground truth data
using the automatically generated confusion matrices as
shown in Table 3. In addition, the user can trace the
results by selecting a rule (or an individual node in the
tree) and see which patterns (pixels) are classified using
that rule (or pass through that node during classification).
Tracing also allows the user to select a pixel in the
original image and see which rule and node are used to
classify that pixel.

The experiments are grouped into four parts:

• evaluation of information fusion using decision tree
classifiers,

• evaluation of rule generalization,
• evaluation of information fusion using other classifiers, and
• evaluation of robustness to missing data.

Quantitative and qualitative results are presented below.

Evaluation of Information Fusion using Decision Tree Classifiers
The first set of experiments involved comparing the per-
formance of combinations of different data layers using
decision trees both for feature selection and as information
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Figure 3. Graphical user interface for classification tree model
visualization. Each node in the tree shows the primary split condi-
tion and, for each class, percentages of training examples that
satisfy that condition. Details of a node selected are also shown for
further examination by the user. These details include the number
of training examples (size) passing through that node, the Gini or
entropy impurity value (deviation), surrogate splits, path from the
root node to the current node (original rule), and the generalized
rule if it is a leaf node. A color version of this figure is available at
the ASPRS website: www.asprs.org.

fusion tools. Table 2 presents 25 different combinations of
data sources (images) and the corresponding correct classifi-
cation rates using the ground truth. Pruning using the cost
complexity measure given in Equation 4 was used during
the learning of decision trees for each combination. The
misclassification cost was estimated using ten-fold cross-
validation and the complexity penalty a was set to 0.0001
empirically for pruning. Since the images used in the
combinations contain a lot of missing data, surrogate splits
were used as previously described. The Gini impurity
function was used in the experiments reported. The result-
ing differences when the entropy function was used were
very insignificant in our data set.

The classification accuracy varied between 60 to 70
percent for the 25 combinations given in Table 2, with the
maximum achieved as 71.16 percent when the three Aerial
bands and the corresponding Gabor features were used. This
is an expected result because the Aerial bands (and the
corresponding Gabor features) have the largest coverage and
do not need the approximations for handling of missing
data. Another observation is that using Gabor features
always improved the accuracy compared to the cases where
no texture information was used. Among the optical bands,
there was a slight increase in the accuracy when Ikonos
bands were used together with Aerial bands. This shows
that even though the Ikonos bands had a small coverage, the
decision tree classifiers with surrogate splits could incorpo-

rate this information with the Aerial bands whenever
possible. More detailed evaluation of information fusion and
missing data handling are given in the following sections.

We also used decision trees for automatic feature selec-
tion. In particular, the second set of experiments involved
using the predictor importance criterion previously described
to find the features (bands) that could partition the measure-
ment space the most effectively. The advantage of this
selection technique is that the importance values can be
directly computed from the trained decision tree; therefore,
no additional iterative search procedure is required for
feature selection. The resulting importance values when all
28 features were given as input to the decision tree classifier
are shown in Figure 4. The DEM (elevation) feature had the
largest importance value. The reason behind this is that the
DEM data originally have 30 m spatial resolution, but the
version used in the classifier was up-sampled (interpolated)
to 2 m for fusion with other data layers. Since the resulting
neighboring pixels have the same value due to up-sampling,
DEM values seem to artificially have almost uniform values
(low variance) for pixels belonging to the same class. This
makes the importance value of DEM higher than other bands
even though this does not guarantee that DEM will have good
generalization ability for classification. Among the optical
sources, the first two Aerial bands had the largest importance
values. Given these two bands, the third (blue) band had a
small significance. Ikonos bands had lower importance
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TABLE 2. COMBINATIONS OF DATA SOURCES (IMAGES) AND THE CORRESPONDING CORRECT CLASSIFICATION RATES WITH RESPECT TO THE GROUND

TRUTH. ORIGINAL DATA SOURCES (AERIAL, DEM, IKONOS2, AND IKONOS3) ARE SHOWN IN FIGURE 1. AERIALB1GABOR AND AERIALB2GABOR

CORRESPOND TO THE GABOR FEATURES EXTRACTED FROM THE FIRST AND THE SECOND BANDS OF THE AERIAL DATA, RESPECTIVELY.
IKONOS2B1GABOR AND IKONOS2B4GABOR CORRESPOND TO THE GABOR FEATURES EXTRACTED FROM THE FIRST AND THE FOURTH (NEAR-INFRARED)
BANDS OF THE IKONOS2 DATA, RESPECTIVELY. THE CROSS MARK AT EACH COLUMN MEANS THAT THE BANDS FROM THAT IMAGE ARE USED IN THE

COMBINATION IN THAT ROW. AERIAL DATA WAS ASSUMED TO BE AVAILABLE IN ALL COMBINATIONS BECAUSE IT HAS THE HIGHEST RESOLUTION

(THE MOST DETAIL) AND THE LARGEST COVERAGE (EXCEPT DEM) AMONG ALL DATA SOURCES

AerialB1 AerialB2 Ikonos2B1 Ikonos2B4 
Aerial DEM Ikonos2 Ikonos3 Gabor Gabor Gabor Gabor Accuracy(%)

X 64.25
X X 60.82
X X X 65.68
X X X X 64.05
X X 69.57
X X X X 68.39
X X X X X 70.02
X X X X X 64.28
X X X X X X 67.99
X X X X X X X 70.50
X X X X X X X X 68.50
X X 64.22
X X X 63.71
X X X 71.16
X X X X X X 70.77
X X X X X X X 68.80
X X X X X 68.54
X X X X 70.87
X X X X 62.39
X X X X X 64.11
X X X X X 70.75
X X X X 70.67
X X X 67.08
X X X X 66.36
X X X X 70.20

Figure 4: Features sorted according to their predictor
importance values. Out of 28 features, only the ones
that constitute the cumulative 99 percent are shown.
Details are given in the text.

values. This result is consistent with Table 2 where there was
only a slight increase in the accuracy when Ikonos bands
were used together with Aerial bands. Apart from the Aerial
bands, Gabor features based on Aerial data constituted the
next set of bands in the order of predictor importance. This
result is also consistent with Table 2 and shows the impor-
tance of texture features for land-cover/land-use classification.
One final observation is that one does not have to use all

bands from the same source. The importance values for only
a subset of such bands are high, and this shows the correla-
tions among the bands and the importance of feature selec-
tion within a problem that involves a lot of features. After
the features were sorted according to their importance values
and the ones that constitute the cumulative 99 percent
importance were selected, the resulting subset of 15 features
were given as input to the decision tree for classification. The
overall accuracy was obtained as 70.92 percent (compared
to 68.50 percent where all 28 bands were used). The confu-
sion matrix for the resulting feature combination is given
in Table 3. It can be seen that some classes (e.g., building,
ground, pine, deciduous) had much higher accuracies
compared to others (e.g., burned, paved, crop, brush, wet-
land). This is due to the lack of qualified ground truth for
some of the classes (e.g., burned areas, paved roads, and
parking lots) and the spectral similarities that caused some
confusion between certain pairs of classes (e.g., crop versus
grass, grass versus brush, wetland versus water). Visual
evaluation acknowledges correct classification of many classes
including, e.g., roads and other paved areas in many cases.

Finally, the third set of experiments involved automatic
feature selection using sequential forward selection and
sequential backward selection algorithms (Duda et al., 2000).
Sequential forward selection is an iterative algorithm that
starts with a single feature and builds up a feature set by, at
each iteration, adding the single best feature to the set of
features selected in the previous iterations. The procedure
starts with computing the classification accuracy when each
feature is used individually, and selects the best one. Given
this best one, pairs of features are formed using one of the
remaining features and this best feature. The classification
accuracy is computed for each pair, and the pair having the
highest accuracy is selected. Given the best two features,
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Figure 5. Results of sequential forward feature selec-
tion: x-axis shows the classification accuracy (%), and
y-axis shows the features added at each iteration (the
first iteration is at the bottom). The highest accuracy
value is shown with a star.

Figure 6. Results of sequential backward feature
selection: x-axis shows the classification accuracy (%)
and y-axis shows the features removed at each iteration
(the first iteration is at the bottom). The highest
accuracy value is shown with a star.

next, triplets of features are formed using one of the remain-
ing features and these two best features. This procedure
continues until all features are used.

Sequential backward selection is also an iterative
algorithm that starts with all features and shrinks down the
feature set by, at each iteration, removing the single worst
feature from the set of features obtained in the previous
iteration. The procedure starts with computing the classifica-
tion accuracy when all d features are used. Then, the
accuracies for all d-1 feature subsets are computed, and the
subset having the highest accuracy is selected. This can also
be interpreted as discarding the single worst feature. Next,
the accuracies for all d-2 feature subsets of this best d-1
feature subset are computed, and the subset having the
highest accuracy is selected. This procedure continues until
one feature is left.

These procedures do not guarantee that the optimal
subset of features is found but they allow us to select a
suboptimal subset without doing an exhaustive search that
would have required 228-1 classifications. Figures 5 and 6

show the iterations of forward and backward selection,
respectively. The best set of features obtained using sequen-
tial forward selection contained 13 features with an overall
accuracy of 72.12 percent. This subset consisted of three
Aerial bands, seven Aerial-based Gabor features, two Ikonos
bands, and one Ikonos-based Gabor feature as shown in
Figure 5. The best set of features obtained using sequential
backward selection contained eight features with an overall
accuracy of 71.68 percent. This subset consisted of three
Aerial bands, four Aerial-based Gabor bands, and one Ikonos
band as shown in Figure 6. The results for individual
classes were also consistent with those discussed above
where most of the classes had similar accuracies as in the
predictor importance criterion-based feature selection case,
with the accuracies for some of the classes (e.g., building,
ground, crop, wetland) improved even further. Note that
these selection results were not affected by the artificial low
variance of the DEM data because they used the classification
error directly as the search criterion. We can conclude that,

TABLE 3. CONFUSION MATRIX FOR THE DECISION TREE CLASSIFIER USING THE 15 FEATURES SELECTED ACCORDING TO THEIR PREDICTOR IMPORTANCE VALUES

Assigned
Total %Agree

burned paved building ground crop grass brush pine deciduous water marsh

burned 24 0 0 0 0 0 0 172 23 187 50 456 5.26
paved 0 38 33 47 9 111 136 2 55 105 0 536 7.09

building 0 0 366 10 0 24 0 0 4 23 0 427 85.71
ground 0 1 4 2022 0 211 31 10 157 6 0 2442 82.80

crop 0 0 0 2976 18163 17740 7415 1899 488 559 525 49765 36.50
True grass 0 20 19 311 1053 10309 3339 9 252 10 7 15329 67.25

brush 0 0 0 209 464 2175 2514 61 1707 37 3 7170 35.06
pine 13 15 9 7 378 8 578 51767 1607 2507 3780 60669 85.33

deciduous 0 31 53 32 86 77 697 3044 53278 608 1605 59511 89.53
water 75 0 20 2 212 6 3 784 571 32119 7710 41502 77.39
marsh 119 21 2 0 12 0 1 1176 1166 1808 3792 8097 46.83

Total 231 126 506 5616 20377 30661 14714 58924 59308 37969 17472 245904 70.92
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TABLE 4. CONFUSION MATRIX FOR THE RULE-BASED CLASSIFIER USING THE 13 FEATURES SELECTED ACCORDING TO THE SEQUENTIAL

FORWARD FEATURE SELECTION ALGORITHM

Assigned
Total %Agree

burned paved building ground crop grass brush pine deciduous water marsh

burned 0 0 0 0 0 0 0 310 34 99 13 456 0.00
paved 0 21 90 43 2 113 97 2 102 66 0 536 3.92

building 0 0 390 6 0 7 0 0 3 21 0 427 91.33
ground 0 0 2 2148 0 86 16 8 177 5 0 2442 87.96

crop 0 1 0 3174 22174 16551 3531 2291 1727 218 98 49765 44.56
True grass 0 6 21 201 182 11515 3068 10 303 22 1 15329 75.12

brush 0 0 0 163 423 1410 3099 31 2022 22 0 7170 43.22
pine 0 1 23 0 873 0 6 54411 1980 1165 2210 60669 89.69

deciduous 0 5 29 156 147 118 612 4112 52815 700 817 59511 88.75
water 0 0 12 1 306 0 0 1350 401 36091 3341 41502 86.96
marsh 0 2 12 0 14 0 1 1955 1072 2353 2688 8097 33.20

Total 0 36 579 5892 24121 29800 10430 64480 60636 40762 9168 245904 75.38

in overall, fusion of spectral and textural features as well as
feature selection improved the classification accuracy.

Evaluation of Rule Generalization
We also evaluated the effects of rule generalization on
classification. Three experiments with different feature sets
were performed. These experiments correspond to the fea-
ture sets selected according to the predictor importance,
sequential forward selection, and sequential backward
selection algorithms. Decision trees were trained using
these features, and the corresponding generalized rule
sets were constructed from these trees as described. The
overall classification accuracies obtained using the features
based on predictor importance, forward selection and
backward selection were 74.81 percent, 75.38 percent, and
75.10 percent, respectively. As an example, the confusion
matrix for the 13-feature subset obtained using sequential
forward selection is shown in Table 4. In all cases, the
classification accuracy for the rule-based classifier consisting
of the generalized rules learned from the decision tree
classifier was higher than the one for the corresponding
decision tree classifier. The improvement was due to the
additional pruning during rule generalization.

Evaluation of Information Fusion using Other Classifiers
We compared the decision tree classifiers with the maxi-
mum likelihood classifier, support vector machine classifier,
minimum distance classifier, naive Bayes classifier, tree
ensemble using boosting and tree ensemble using bagging
available in the VISIMINE system. Our maximum likelihood
classifier implementation uses Gaussian mixture models for
class-conditional densities. Each component in the mixture
has an arbitrary covariance matrix where the parameters of
the model are estimated using the Expectation-Maximization
algorithm (Duda et al., 2000). Our support vector machine
(SVM) classifier implementation uses both linear and polyno-
mial kernels for mappings from the original feature space to
a high-dimensional space where the training examples for
different classes can be separated by hyperplanes. SVM
classifiers are originally developed for binary classification
and our implementation uses the decision-directed acyclic
graph approach (Platt et al., 2000) for extension of SVMs to
multi-class classification. The minimum distance classifier
forms clusters of input training examples and labels a test
pattern with the label of the cluster whose centroid is
closest to the feature vector of that pattern (Duda et al.,
2000). The naive Bayes classifier uses the Bayes decision

rule with the conditional independence assumption that
states that features are independent given the class label for
a pattern (Duda et al., 2000). Our implementation models
class-conditional probabilities using Gaussian mixtures.
Bagging uses multiple bootstrapped versions of the original
training data where each of these bootstrap data sets is used
to train a different component classifier and the final
classification decision is based on the vote of each compo-
nent classifier (Breiman, 1996). Boosting also iteratively
generates new training sets where the probability of a data
point being selected for a component classifier is determined
according to how accurately it was classified by earlier
component classifiers. The final classification decision is
based on the weighted sum of the outputs of the component
classifiers (Schapire, 2002).

Since these additional classifiers cannot handle missing
data, we used the subset of the training data that includes
the intersection of the coverages of all sensors (see Figure 1).
We also used only the Aerial data and the Gabor features
corresponding to the second (green) band because of compu-
tational reasons for some of the classifiers. The resulting
performances for different classifier settings are given in
Table 5. As can be seen from the results, the performances
for different classifiers were similar to each other except
the minimum distance and the naive Bayes classifiers that
could not perform as well as the others. An important
observation is that the common accuracy, which was close
to 90 percent, for this data set was greater than the accuracy
values (�70 percent) obtained by the decision tree classifiers
for the whole data. The main reason behind this is the
presence of large amounts of missing data in the original
data set. In addition, these results do not include the
“burned” and “crop” classes as they were removed from
the training data because no ground truth examples exist
for these classes in the small coverage area. Some of the
increase in classification accuracy can be attributed to
this removal because these two classes cannot be classified
accurately as can be seen from the confusion matrices
discussed earlier. Finally, the remaining �10 percent error
for the fully available data set can be associated with
the complexity of the land-cover/land-use classes in the
high-resolution imagery and the spectral similarities among
these classes.

We also used hypothesis testing to further evaluate the
significance of the differences between the performances of
different classifiers. The McNemar test (Dietterich, 1998;
Debeir et al., 2002) is used to check whether the predictions
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TABLE 5. PERFORMANCE OF DIFFERENT CLASSIFIERS FOR A SUBSET OF THE ORIGINAL DATA WHERE THERE IS COMPLETE

COVERAGE (SHOWN USING THE “RED” POLYGON IN FIGURE 1). THE NOTES COLUMN DESCRIBES THE SETTINGS OF

A PARTICULAR CLASSIFIER

Classifier Notes Accuracy(%)

Decision tree (DT-CC) Pruned using the cost-complexity measure 87.85
Decision tree (DT-CV) Pruned using cross-validation 88.20
Maximum likelihood (ML-1) Single multivariate Gaussian for each class 86.28
Maximum likelihood (ML-2) Mixture of 2 Gaussians for each class 87.83
Maximum likelihood (ML-3) Mixture of 3 Gaussians for each class 89.22
Maximum likelihood (ML-4) Mixture of 4 Gaussians for each class 88.87
Support vector machine (SVM-L) Linear kernel 87.97
Support vector machine (SVM-P) Polynomial kernel 90.20
Minimum distance (MD) 66.78
Naive Bayes (NB) 72.97
Boosted tree ensemble (BS-30) 30 components 89.01
Boosted tree ensemble (BS-35) 50 components 89.09
Bagged tree ensemble (BG-30) 30 components 88.34
Combined classifiers (COMB) Tree 	 SVM 	 Maximum likelihood 90.24

TABLE 6. MCNEMAR TEST RESULTS. THE NUMBERS SHOW THE P-VALUES FOR THE CORRESPONDING PAIR OF CLASSIFIERS. 
A P-VALUE BEING GREATER THAN THE SIGNIFICANCE LEVEL a � 0.05 (SHOWN AS BOLD) MEANS THAT THERE IS NO SIGNIFICANT

DIFFERENCE BETWEEN THE PREDICTIONS OF THE CORRESPONDING CLASSIFIERS. CLASSIFIER NAMES ARE GIVEN IN TABLE 5

DT-CC DT-CV ML-1 ML-2 SVM-P BS-30 BG-30 COMB

DT-CC — 0.5071 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DT-CV — 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ML-1 — 0.0000 0.0000 0.0000 0.0000 0.0000
ML-2 — 0.0000 0.0000 0.0000 0.0000
SVM-P — 0.0000 0.0000 0.0000
BS-30 — 0.3057 0.0030
BG-30 — 0.0350
COMB —

of two classifiers trained with the same training data differ
significantly among themselves. Given two classification
algorithms A and B, we count the number of data points
misclassified by A but not by B (denoted n01), and the
number of examples misclassified by B but not by A
(denoted n10). Under the null hypothesis, there is no
difference between the classifiers’ predictions and they
have the same error rate, which means that n01 � n10.
The test statistic:

(7)

follows a x2 distribution with one degree of freedom under
this hypothesis. Given a significance level a, we can find the
rejection region where the probability that the test statistic T
is greater than a critical value is less than a. For example, for
a � 0.05, this critical value is found as x2

1,0.95 � 3.8415.
If the test statistic is greater than this value, we can reject the
null hypothesis in favor of the hypothesis that the difference
between the performances of two classifiers is significant.
The significance of this difference for different classifier pairs
can be quantified by the p-value which is the probability of
making a Type I error that occurs when the null hypothesis
is true (i.e., there is no difference between the two classifiers)
and the test rejects the null hypothesis.

The McNemar test was performed to evaluate the
significance of the difference between the performances of
different classifiers. Among the 28 different pairs of classi-
fiers compared, only two cases had a p-value greater than the
significance level (i.e., there was no significant difference) as
shown in Table 6. These cases were: decision trees pruned

T �
( ƒn01 � n10 ƒ � 1)2

n01 	 n10

using the cost-complexity measure vs. cross-validation, and
classifier ensembles formed using boosting versus bagging.
These two cases were expected because the classifiers
compared were based on similar structures and were trained
using similar algorithms. All other pairs were found to be
significantly different.

These comparative experiments show that the decision
tree classifiers perform at least as good as many other
classifiers (even their combinations) on the data with full
coverage. Therefore, decision trees can be considered useful
and effective tools for information fusion with the additional
important advantage that they can handle missing data
without a significant decrease in performance. On the other
hand, many commonly used classifiers can only classify a
small subset of the original data where there is complete
coverage. In other words, for our data set, they can perform
information fusion only for �6 percent of the original data
(in terms of area with respect to the data source with the
largest coverage) as shown in Figure 1 and Table 1.

Evaluation of Robustness to Missing Data
We evaluated the robustness of decision tree classifiers to
missing data using three methods:

• using surrogate splits,
• using nearest neighbor imputation, and
• using combinations of one-class classifiers.

The Aerial data, the Ikonos data, the Gabor features
extracted from the first and the second bands of the Aerial
data, and the Gabor features extracted from the first and the
fourth bands of the Ikonos data (total of 23 bands) were
used as features.
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TABLE 7. CONFUSION MATRIX FOR THE DECISION TREE CLASSIFIER USING SURROGATE SPLITS FOR HANDLING MISSING DATA

Assigned
Total %Agree

paved building ground grass brush pine deciduous water marsh

paved 270 1 12 43 50 23 134 3 0 536 50.37
building 22 240 7 30 3 10 114 1 0 427 56.21
ground 6 0 2183 35 11 5 194 5 3 2442 89.39
grass 13 0 183 11450 1738 93 1835 17 0 15329 74.70

True brush 3 0 205 1787 3230 151 1772 21 1 7170 45.05
pine 0 0 0 0 13 56076 902 1115 2563 60669 92.43

deciduous 1 0 85 63 764 5674 52637 40 247 59511 88.45
water 0 0 0 0 4 2827 214 34599 3858 41502 83.37
marsh 0 0 0 0 0 1960 78 1579 4480 8097 55.33

Total 315 241 2675 13408 5813 66819 57880 37380 11152 195683 84.40

For all three methods, the subset of data where there is
complete coverage (no missing parts) was used for training
so that the classification models were learned from patterns
that have values for all features. Same as in the previous
section where different classifiers were compared, the
“burned” and “crop” classes were removed because no
training ground truth examples exists for these classes in the
area where there is complete coverage of all features. To test
the classifiers, full test data (see Table 1) were used.

The confusion matrices for surrogate splits, nearest
neighbor imputation, and combinations of one-class classi-
fiers are given in Tables 7, 8, and 9, respectively. The
highest accuracy was obtained as 84.40 percent when

surrogate splits were used for handling missing data. On the
same data set, nearest neighbor imputation and one-class
classifiers achieved 84.19 percent and 47.08 percent accura-
cies, respectively. Even though combinations of one-class
classifiers can be applied to any classifier as previously
described, their performance was significantly lower than
those of other missing data handling techniques on this data
set. One possible reason for this may be the use of each
feature independently for the classifiers used in the combi-
nation. We believe that independent usage of the features
could not model the complex data and the complex set of
classes in this problem setting. Another justification for this
observation can be found in the relatively low performance

TABLE 8. CONFUSION MATRIX FOR THE DECISION TREE CLASSIFIER USING NEAREST NEIGHBOR IMPUTATION FOR HANDLING MISSING DATA

Assigned
Total %Agree

paved building ground grass brush pine deciduous water marsh

paved 266 1 10 56 45 20 115 20 3 536 49.63
building 47 316 15 32 1 3 12 1 0 427 74.00
ground 5 0 2181 78 18 18 139 1 2 2442 89.31
grass 15 0 203 11781 2344 203 765 18 0 15329 76.85

True brush 10 0 427 1665 3236 228 1579 21 4 7170 45.13
pine 0 0 0 0 18 55417 1324 1117 2793 60669 91.34

deciduous 5 0 183 143 1080 4949 52368 185 598 59511 88.00
water 0 1 0 0 4 2353 361 35010 3773 41502 84.36
marsh 0 0 0 0 2 1922 235 1762 4176 8097 51.57

Total 348 318 3019 13755 6748 65113 56898 38135 11349 195683 84.19

TABLE 9. CONFUSION MATRIX FOR THE DECISION TREE CLASSIFIER USING COMBINATIONS OF ONE-CLASS CLASSIFIERS FOR HANDLING MISSING DATA

Assigned
Total %Agree

paved building ground grass brush pine deciduous water marsh

paved 17 0 0 0 0 519 0 0 0 536 3.17
building 0 21 0 31 0 327 28 20 0 427 4.92
ground 0 0 441 3 0 1977 21 0 0 2442 18.06
grass 0 0 0 70 6 7076 0 18 0 7170 6.56

True brush 0 0 0 1005 0 14304 9 11 0 15329 0.08
pine 0 0 0 10 1 60450 18 188 2 60669 99.64

deciduous 0 0 1 0 0 58906 589 15 0 59511 0.99
water 0 0 1 724 26 11104 12 29594 41 41502 71.31
marsh 0 0 0 125 4 7697 0 260 11 8097 0.14

Total 17 21 443 1968 37 162360 677 30106 54 195683 47.08
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of the naive Bayes classifier that uses the same independ-
ence assumption in the experiments presented in the
previous section.

The nearest neighbor imputation technique achieved
similar performance as the surrogate splits technique.
However, the classifier resulting from the use of surrogate
splits has the additional advantage of providing a classifi-
cation model with higher understandability and inter-
pretability due to the direct incorporation of the surrogate
(alternative) conditions into the decision rules (see Figure 3
for an example). Furthermore, the surrogate splits-based
classifier has faster run-time performance because of the
additional cost of computing distances in the nearest
neighbor imputation technique.

When these results in Table 7 are compared to those in
Tables 3 and 4 with accuracies around 70 to 75 percent, we
can see an improvement of around 10 percent. The reason
for this improvement is that the subset of data where there is
complete coverage was used for training in the former case
(Table 7) but the whole training data, with many missing
areas, were used in the latter case (Tables 3 and 4). There-
fore, the learned classification models were more accurate in
the sense that they were learned from data where all features
for all patterns were available. (The same testing data were
used for all of these cases (Tables 3, 4, and 7).) When the
results of Table 7 are compared to those in Table 5, the
improvement of around 4 percent in the latter case can be
attributed to the use of testing data where all features for all
patterns were available. (The same training data where used
for all of these cases (Tables 5 and 7).)

Evaluation Summary
The conclusions of the experiments in the Performance
Evaluation Section can be summarized as follows. When
there were missing data in the training set, using only the
subset where there was complete coverage (no missing parts)
gave better results (Table 7 versus 3 and 4). When there was
missing data in the testing set, the accuracy using only the
subset where there was complete coverage (Table 5) was
higher than the accuracy for the whole data where some
features were missing for some patterns (Tables 3, 4, and 7),
but using surrogate splits allowed classifying the whole data
(�17 times more area than the subset) without a significant
difference (�4 percent) in the overall accuracy. As visual
examples, Figures 7 and 8 illustrate classification in the
presence of missing data. Aerial and Ikonos bands were
used in these examples. Missing data in the Ikonos bands
initially resulted in many false alarms. However, land-
cover/land-use classification drastically improved when
surrogate splits were used.

Conclusions
We described decision tree and rule-based tools for building
statistical land-cover/land-use models for classification of
remote sensing images. We concentrated on three important
problems in the image analysis process: information fusion,
model understandability, and handling of missing data.

We presented detailed performance evaluation of the
proposed models and algorithms using a very large multi-
source data set consisting of spectral, textural and DEM
data layers with a total of 28 data bands. An extensive
set of experiments consisting of comparisons of 25 different
combinations of data sources illustrated that decision tree clas-
sifiers are capable of fusing information from different sources
and handling missing observations in these sources. These
experiments also proved that the proposed classifiers can
be used for feature selection in parallel to building classifica-
tion models. In the next set of experiments, the rule-based

classifier consisting of the generalized rules learned from a
decision tree classifier had a higher accuracy than the corre-
sponding tree classifier due to the additional pruning during
rule generalization. We also performed comparative experi-
ments using six other popular classification techniques and
showed that the decision tree classifiers perform at least as
good as many other classifiers (even their combinations) with
the additional important advantage of providing classification
models with higher understandability and human readability.
Furthermore, evaluation of the robustness of these classifiers
to missing data illustrated that surrogate splits incorporated
into decision trees and rules can robustly handle missing
data with a higher accuracy than two other comparative
techniques.

Overall, the decision tree classifiers and the correspon-
ding rules proved to be very powerful and flexible in
building land-cover/land-use models by fusing information
from different data layers while being very robust to
missing data during both training and classification. Our
current work includes developing new methods for region
segmentation, and building human readable models that are
learned for characterizing the contents of the resulting
image objects using shape attributes and statistical sum-
maries of their spectral and textural features.
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