17 research outputs found

    Ecological speciation in sympatric palms: 1. Gene expression, selection and pleiotropy

    Get PDF
    Ecological speciation requires divergent selection, reproductive isolation and a genetic mechanism to link the two. We examined the role of gene expression and coding sequence evolution in this process using two species of Howea palms that have diverged sympatrically on Lord Howe Island, Australia. These palms are associated with distinct soil types and have displaced flowering times, representing an ideal candidate for ecological speciation. We generated large amounts of RNA-Seq data from multiple individuals and tissue types collected on the island from each of the two species. We found that differentially expressed loci as well as those with divergent coding sequences between Howea species were associated with known ecological and phenotypic differences, including response to salinity, drought, pH and flowering time. From these loci, we identified potential 'ecological speciation genes' and further validate their effect on flowering time by knocking out orthologous loci in a model plant species. Finally, we put forward six plausible ecological speciation loci, providing support for the hypothesis that pleiotropy could help to overcome the antagonism between selection and recombination during speciation with gene flow

    Applied aspects of pineapple flowering

    Full text link

    Quantification of cyanogenic glycosides in seedlings of three Macadamia (Proteaceae) species

    No full text
    Members of the genus Macadamia contain cyanogenic compounds, which release hydrogen cyanide (HCN) on hydrolysis. Concentrations of releasable cyanide were measured in tissues of mature nuts and seedlings of Macadamia integrifolia Maiden & Betche, M. tetraphylla L.A.S. Johnson and M. ternifolia F. Muell. Root, cotyledon and leaf samples were assayed at several developmental stages from germination to maturation of the first leaves. All samples contained detectable levels of cyanide. Concentrations were low (0.15 µmol g fresh weight) in cotyledons of mature M. integrifolia and M. tetraphylla seeds, corresponding to the edibility of the seeds of these commercial species, and much higher (9.6 µmol g) in the inedible M. ternifolia seeds. Levels in cotyledons of all three species rose dramatically during germination. Root cyanide concentrations of 6-23 µmol g were measured. The immature first leaf of the commercial species contained the highest concentrations (38-77 µmol g). Levels decreased with leaf maturity, correlating with toughening of the leaf and possibly a consequent diminished requirement for cyanide as a herbivory deterrent. The significance of the results with respect to plant-insect interactions is discussed

    Effect of 6-BA on nodal explant bud sproutings of Coffea arabica cv. Mundo Novo Efeito de 6-BA na brotação de gemas de explantes nodais de Coffea arabica cv. Mundo Novo

    No full text
    Coffee plants can be micropropagated by nodal bud sprouting using the 6-benzylaminopurine (6-BA) hormone. However, literature reports the use of a wide range of 6-BA, from 0.5 to 88.8 µM L-1. So, this study was performed to narrow that range. Nodal explants of Coffea arabica cv Mundo Novo obtained from in vitro plantlets were inoculated on gelled-MS medium supplemented with different concentrations of 6-BA. Two assays were carried out: in the first one, 6-BA was used at concentrations of 0, 5, 25, 50, and 100 µM L-1, being evaluated at 43 and 123 days. In the second experiment, dosis of 10, 20 and 30 µM L-1, have evaluated at 65 and 100 days. Treatments with 6-BA induced multiple sprouting from the nodal explants, which were best characterized around 100 days after inoculation. The nodal explants grew taller and showed multiple shoots, whereas the effect of 6-BA at 5 to 25 µM L-1 was similar to that with higher concentrations (50 and 100 µM L-1). Nodal explants yielded from 2.9 to 6.0 buds per node, achieving height of 1.3 to 1.5 cm at 5 to 25 µM L-1 of 6-BA, whereas they yielded from 4.3 to 4.9 buds per node but the sprouting grew about 0.8 cm at 50 and 100 µM L-1 of 6-BA. This study indicated that multiple sprouting of lateral buds can be induced by lower concentrations of 6-BA, for example, from 10 to 30 µM L-1, diminishing possible risks of somaclonal variation due to high levels of hormone concentration.<br>O cafeeiro pode ser micropropagado via brotação de gemas laterais, aplicando o regulador de crescimento 6-benzilaminopurina (6-BA). Entretanto, a literatura apresenta ampla variação da dose empregada, desde 0.5 a 88.8 µM L-1. Assim, este estudo visou otimizar doses para explantes nodais do cafeeiro C. arabica cv Mundo Novo. Explantes nodais, obtidos de plântulas cultivadas in vitro, foram inoculados em meio MS geleificado, com adição de diferentes concentrações de 6-BA. Foram feitos dois experimentos: no primeiro, 6-BA foi usado nas doses de 0, 5, 10, 25, 50 e 100 µM L-1 e avaliado aos 43 e 123 dias; no segundo, 10, 20 e 30 µM L-1, avaliado aos 65 e 100 dias após a inoculação dos explantes. Os tratamentos com 6-BA induziram a multibrotação dos explantes nodais, e os resultados foram mais bem caracterizados aos cem dias. Os explantes nodais tratados formaram multibrotações que também atingiram maior altura; todavia, o efeito de 6-BA nas concentrações entre 5 a 25 µM L-1 foi semelhante ao das doses mais elevadas, 50 e 100 µM L-1. As doses de 5 a 25 µM L-1 de 6-BA induziram a brotação de 2,9 a 6,0 gemas por nó, atingindo de 1,3 a 1,5 cm, enquanto os tratamentos de 50 a 100 µM L-1 formaram 3,0 a 4,9 gemas por nó e as suas brotações atingiram cerca de 0,8 cm de altura. Observou-se neste estudo que a multibrotação de explantes nodais de C. arabica cv Mundo Novo pode ser induzida por concentrações menores de 6-BA, entre 10 a 30 µM L-1, diminuindo os riscos de variação somaclonal devido às altas concentrações de hormônio
    corecore