2,011 research outputs found

    Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches

    Get PDF
    We consider two ‘comprehensive’ modelling approaches for engineering fabrics. We distinguish the two approaches using the terms ‘semi-discrete’ and ‘continuum’, reflecting their natures. We demonstrate a fitting procedure, used to identify the constitutive parameters of the continuum model from predictions of the semi-discrete model, the parameters of which are in turn fitted to experimental data. We, then, check the effectiveness of the continuum model by verifying the correspondence between semi-discrete and continuum model predictions using test cases not previously used in the identification process. Predictions of both modelling approaches are compared against full-field experimental kinematic data, obtained using stereoscopic digital image correlation techniques, and also with measured force data. Being a reduced order model and being implemented in an implicit rather than an explicit finite-element code, the continuum model requires significantly less computational power than the semi-discrete model and could therefore be used to more efficiently explore the mechanical response of engineering fabrics

    Groundwater Flow andWater Quality – A Flowpath Study in the SeminoleWell Field, Cedar Rapids, Iowa

    Get PDF
    In Iowa, alluvial aquifers near major rivers are a source of water for many communities. The City of Cedar Rapids withdraws water from wells completed in the Cedar River alluvium, a shallow alluvial aquifer adjacent to the Cedar River. The City of Cedar Rapids is located within Linn County in east-central Iowa, and water for the City is supplied by four well fields (East, Northwest, Seminole, and West well fields) along the Cedar River. The City has a population of about 121,000, and several large industries are major water users. Currently, per capita water usage in the City is nearly three times the national average. The City is committed to providing both a high quality and quantity of water to its customers. The USGS and Cedar Rapids Water Department have been working together in an ongoing research program to better understand water quality and flow in the Cedar River and alluvial well fields. Work has been done on both a basin and well-field approach and has involved dye tracing/time-of-travel studies on the Cedar River, water-quality sampling, geochemical modeling, and groundwater-flow modeling

    Solar Effects on Global Climate Due to Cosmic Rays and Solar Energetic Particles

    Get PDF
    Although the work reported here does not directly connect solar variability with global climate change, this research establishes a plausible quantitative causative link between observed solar activity and apparently correlated variations in terrestrial climate parameters. Specifically, we have demonstrated that ion-mediated nucleation of atmospheric particles is a likely, and likely widespread, phenomenon that relates solar variability to changes in the microphysical properties of clouds. To investigate this relationship, we have constructed and applied a new model describing the formation and evolution of ionic clusters under a range of atmospheric conditions throughout the lower atmosphere. The activation of large ionic clusters into cloud nuclei is predicted to be favorable in the upper troposphere and mesosphere, and possibly in the lower stratosphere. The model developed under this grant needs to be extended to include additional cluster families, and should be incorporated into microphysical models to further test the cause-and-effect linkages that may ultimately explain key aspects of the connections between solar variability and climate

    Stratospheric aerosol modification by supersonic transport operations with climate implications

    Get PDF
    The potential effects on stratospheric aerosois of supersonic transport emissions of sulfur dioxide gas and submicron size soot granules are estimated. An interactive particle-gas model of the stratospheric aerosol is used to compute particle changes due to exhaust emissions, and an accurate radiation transport model is used to compute the attendant surface temperature changes. It is shown that a fleet of several hundred supersonic aircraft, operating daily at 20 km, could produce about a 20% increase in the concentration of large particles in the stratosphere. Aerosol increases of this magnitude would reduce the global surface temperature by less than 0.01 K

    Environmental effects of SPS: The middle atmosphere

    Get PDF
    The heavy lift launch vehicle associated with the solar power satellite (SPS) would deposit in the upper atmosphere exhaust and reentry products which could modify the composition of the stratosphere, mesosphere, and lower ionosphere. In order to assess such effects, atmospheric model simulations were performed, especially considering a geographic zone centered at the launch and reentry latitudes

    Preliminary results of fast neutron treatments in carcinoma of the pancreas

    Get PDF
    A group of 30 patients with adenocarcinoma of the pancreas including some patients with very advanced disease, were treated with the so-called mixed beam modality employing photon treatments three times per week and neutron treatments twice a week. Two hundred Rads or equivalent Rads (RBE 3.3) were given in daily fractions aiming at a total dose of 6000 Rads in 6 to 8 weeks. The treatments were well tolerated and significant palliation was achieved in 26 to 30 cases. Twelve months survival was 33 percent with a median survival of 7 months or 210 days. Treatment techniques and localization procedures are discussed

    Thermal Frontal Polymerization with a Thermally Released Redox Catalyst

    Get PDF
    We studied thermal frontal polymerization using a redox systemin an attempt to lower the temperature of the frontally polymerizable system while increasing the front velocity so as to obtain a self-sustaining front in a thinner layer than without the redox components. A cobalt-containing polymer with a melting point of 63 C (Intelimer 6050X11) and cumene hydroperoxide were used with a triacrylate. The use of the Intelimer decreased the front velocity but allowed fronts to propagate in thinner layers and withmore filler while still having a pot life of days. Nonplanar modes of propagation occurred. Fronts propagated faster when 6-O-palmitoyl-L-ascorbic acid was used as a reductant. Interestingly, fronts were also faster with the reductant even without the Intelimer if kaolin clay was the filler; however, the pot life was significantly reduce

    Trends in aerosol abundances and distributions

    Get PDF
    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's

    The Atmospheric Effects of Stratospheric Aircraft: a First Program Report

    Get PDF
    Studies have indicated that, with sufficient technology development, high speed civil transport aircraft could be economically competitive with long haul subsonic aircraft. However, uncertainty about atmospheric pollution, along with community noise and sonic boom, continues to be a major concern; and this is addressed in the planned 6 yr HSRP begun in 1990. Building on NASA's research in atmospheric science and emissions reduction, the AESA studies particularly emphasizing stratospheric ozone effects. Because it will not be possible to directly measure the impact of an HSCT aircraft fleet on the atmosphere, the only means of assessment will be prediction. The process of establishing credibility for the predicted effects will likely be complex and involve continued model development and testing against climatological patterns. Lab simulation of heterogeneous chemistry and other effects will continue to be used to improve the current models
    • …
    corecore