1,361 research outputs found

    Versatile method for template-free synthesis of single crystalline metal and metal alloy nanowires

    Full text link
    © 2016 The Royal Society of Chemistry. Metal and metal alloy nanowires have applications ranging from spintronics to drug delivery, but high quality, high density single crystalline materials have been surprisingly difficult to fabricate. Here we report a versatile, template-free, self-assembly method for fabrication of single crystalline metal and metal alloy nanowires (Co, Ni, NiCo, CoFe, and NiFe) by reduction of metal nitride precursors formed in situ by reaction of metal salts with a nitrogen source. Thiol reduction of the metal nitrides to the metallic phase at 550-600 °C results in nanowire growth. In this process, sulfur acts as a uniaxial structure-directing agent, passivating the surface of the growing nanowires and preventing radial growth. The versatility of the method is demonstrated by achieving nanowire growth from gas-phase, solution-phase or a combination of gas- and solution-phase precursors. The fabrication method is suited to large-area CVD on a wide range of solid substrates

    Robust multicolor single photon emission from point defects in hexagonal boron nitride

    Full text link
    © 2017 IEEE. We demonstrates engineering of quantum emitters in hBN multi-layers using either electron beam irradiation or annealing. The defects exhibit a broad range of multicolor room-temperature single photon emissions across the visible and the near-infrared ranges

    Quasi-BIC Resonant Enhancement of Second-Harmonic Generation in WS2 Monolayers.

    Full text link
    Atomically thin monolayers of transition metal dichalcogenides (TMDs) have emerged as a promising class of novel materials for optoelectronics and nonlinear optics. However, the intrinsic nonlinearity of TMD monolayers is weak, limiting their functionalities for nonlinear optical processes such as frequency conversion. Here we boost the effective nonlinear susceptibility of a TMD monolayer by integrating it with a resonant dielectric metasurface that supports pronounced optical resonances with high quality factors: bound states in the continuum (BICs). We demonstrate that a WS2 monolayer combined with a silicon metasurface hosting BICs exhibits enhanced second-harmonic intensity by more than 3 orders of magnitude relative to a WS2 monolayer on top of a flat silicon film of the same thickness. Our work suggests a pathway to employ high-index dielectric metasurfaces as hybrid structures for enhancement of TMD nonlinearities with applications in nonlinear microscopy, optoelectronics, and signal processing

    Deep auto-encoders with sequential learning for multimodal dimensional emotion recognition

    Get PDF
    Multimodal dimensional emotion recognition has drawn a great attention from the affective computing community and numerous schemes have been extensively investigated, making a significant progress in this area. However, several questions still remain unanswered for most of existing approaches including: (i) how to simultaneously learn compact yet representative features from multimodal data, (ii) how to effectively capture complementary features from multimodal streams, and (iii) how to perform all the tasks in an end-to-end manner. To address these challenges, in this paper, we propose a novel deep neural network architecture consisting of a two-stream auto-encoder and a long short term memory for effectively integrating visual and audio signal streams for emotion recognition. To validate the robustness of our proposed architecture, we carry out extensive experiments on the multimodal emotion in the wild dataset: RECOLA. Experimental results show that the proposed method achieves state-of-the-art recognition performance

    Single photon emission from plasma treated 2D hexagonal boron nitride

    Full text link
    © 2018 The Royal Society of Chemistry. Artificial atomic systems in solids are becoming increasingly important building blocks in quantum information processing and scalable quantum nanophotonic networks. Amongst numerous candidates, 2D hexagonal boron nitride has recently emerged as a promising platform hosting single photon emitters. Here, we report a number of robust plasma and thermal annealing methods for fabrication of emitters in tape-exfoliated hexagonal boron nitride (hBN) crystals. A two-step process comprising Ar plasma etching and subsequent annealing in Ar is highly robust, and yields an eight-fold increase in the concentration of emitters in hBN. The initial plasma-etching step generates emitters that suffer from blinking and bleaching, whereas the two-step process yields emitters that are photostable at room temperature with emission wavelengths greater than ∼700 nm. Density functional theory modeling suggests that the emitters might be associated with defect complexes that contain oxygen. This is further confirmed by generating the emitters via annealing hBN in air. Our findings advance the present understanding of the structure of quantum emitters in hBN and enhance the nanofabrication toolkit needed to realize integrated quantum nanophotonic circuits

    Randomised primary health center based interventions to improve the diagnosis and treatment of undifferentiated fever and dengue in Vietnam

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Fever is a common reason for attending primary health facilities in Vietnam. Response of health care providers to patients with fever commonly consists of making a presumptive diagnosis and proposing corresponding treatment. In Vietnam, where malaria was brought under control, viral infections, notably dengue, are the main causes of undifferentiated fever but they are often misdiagnosed and inappropriately treated with antibiotics.</p> <p>This study investigate if educating primary health center (PHC) staff or introducing rapid diagnostic tests (RDTs) improve diagnostic resolution and accuracy for acute undifferentiated fever (AUF) and reduce prescription of antibiotics and costs for patients.</p> <p>Methods</p> <p>In a PHC randomized intervention study in southern Vietnam, the presumptive diagnoses for AUF patients were recorded and confirmed by serology on paired (acute and convalescence) sera. After one year, PHCs were randomized to four intervention arms: training on infectious diseases (A), the provision of RDTs (B), the combination (AB) and control (C). The intervention lasted from 2002 until 2006.</p> <p>Results</p> <p>The frequency of the non-etiologic diagnosis "undifferentiated fever" decreased in group AB, and - with some delay- also in group B. The diagnosis "dengue" increased in group AB, but only temporarily, although dengue was the most common cause of fever. A correct diagnosis for dengue initially increased in groups AB and B but only for AB this was sustained. Antibiotics prescriptions increased in group C. During intervention it initially declined in AB with a tendency to increase afterwards; in B it gradually declined. There was a substantial increase of patients' costs in B.</p> <p>Conclusions</p> <p>The introduction of RDTs for infectious diseases such as dengue, through free market principles, does improve the quality of the diagnosis and decreases the prescription of antibiotics at the PHC level. However, the effect is more sustainable in combination with training; without it RDTs lead to an excess of costs.</p

    A Model for the Prediction of Fiber Elasticity

    Get PDF
    A model is presented that enables the elastic properties of wood fibers to be estimated from the properties of its polymeric constituents, cellulose, hemicellulose, and lignin. The influence of the value of the axial stiffness of the cellulose crystal is demonstrated, its proper value being discussed in comparison with experimental data on fibers. The effects on fiber stiffness of the S2 fibril angle, the fibril angles of other layers, the crystallinity, and layer thicknesses are analyzed. The manner in which the effect of a variation in yield can be simulated by a change in shape factor of the reinforcing cellulose crystals is demonstrated, the cell wall thus being considered to be a discontinuous reinforced composite

    Leukotriene A4 Hydrolase Genotype and HIV Infection Influence Intracerebral Inflammation and Survival From Tuberculous Meningitis.

    Get PDF
    BACKGROUND: Tuberculous meningitis (TBM) is the most devastating form of tuberculosis, yet very little is known about the pathophysiology. We hypothesized that the genotype of leukotriene A4 hydrolase (encoded by LTA4H), which determines inflammatory eicosanoid expression, influences intracerebral inflammation, and predicts survival from TBM. METHODS: We characterized the pretreatment clinical and intracerebral inflammatory phenotype and 9-month survival of 764 adults with TBM. All were genotyped for single-nucleotide polymorphism rs17525495, and inflammatory phenotype was defined by cerebrospinal fluid (CSF) leukocyte and cytokine concentrations. RESULTS: LTA4H genotype predicted survival of human immunodeficiency virus (HIV)-uninfected patients, with TT-genotype patients significantly more likely to survive TBM than CC-genotype patients, according to Cox regression analysis (univariate P = .040 and multivariable P = .037). HIV-uninfected, TT-genotype patients had high CSF proinflammatory cytokine concentrations, with intermediate and lower concentrations in those with CT and CC genotypes. Increased CSF cytokine concentrations correlated with more-severe disease, but patients with low CSF leukocytes and cytokine concentrations were more likely to die from TBM. HIV infection independently predicted death due to TBM (hazard ratio, 3.94; 95% confidence interval, 2.79-5.56) and was associated with globally increased CSF cytokine concentrations, independent of LTA4H genotype. CONCLUSIONS: LTA4H genotype and HIV infection influence pretreatment inflammatory phenotype and survival from TBM. LTA4H genotype may predict adjunctive corticosteroid responsiveness in HIV-uninfected individuals

    Novel Evidence of HBV Recombination in Family Cluster Infections in Western China

    Get PDF
    Two hepatitis B virus (HBV) C/D recombinants were isolated from western China. No direct evidence indicates that these new viruses arose as a result of recombination between genotype C and D or a result of convergence. In this study, we search for evidence of intra-individual recombination in the family cluster cases with co-circulation of genotype C, D and C/D recombinants. We studied 68 individuals from 15 families with HBV infections in 2006, identified individuals with mixed HBV genotype co-infections by restriction fragment length polymorphism and proceeded with cloning and DNA sequencing. Recombination signals were detected by RDP3 software and confirmed by split phylogenetic trees. Families with mixed HBV genotype co-infections were resampled in 2007. Three of 15 families had individuals with different HBV genotype co-infections in 2006. One individual (Y2) had a triple infection of HBV genotype C, D and C/D recombinant in 2006, but only genotype D in 2007. Further clonal analysis of this patient indicated that the C/D recombinant was not identical to previously isolated CD1 or CD2, but many novel recombinants with C2, D1 and CD1 were simultaneously found. All parental strains could recombine with each other to form new recombinant in this patient. This indicates that the detectable mixed infection and recombination have a limited time window. Also, as the recombinant nature of HBV precludes the possibility of a simple phylogenetic taxonomy, a new standard may be required for classifying HBV sequences
    corecore