13 research outputs found
The RAPIDOS projectd-European and Chinese collaborative research on biomaterials
The research project entitled “rapid prototyping of custom-made bone-forming tissue engineering constructs” (RAPIDOS) is one of the three unique projects that are the result of the first coordinated call for research proposals in biomaterials launched by the European Union Commission and the National Natural Science Foundation of China in 2013 for facilitating bilateral translational research. We formed the RAPIDOS European and Chinese consortium with the aim of applying technologies creating custom-made tissue engineered constructs made of resorbable polymer and calcium phosphate ceramic composites specifically designed by integrating the following: (1) imaging and information technologies, (2) biomaterials and process engineering, and (3) biological and biomedical engineering for novel and truly translational bone repair solutions. Advanced solid free form fabrication technologies, precise stereolithography, and low-temperature rapid prototyping provide the necessary control to create innovative high-resolution medical implants. The use of Chinese medicine extracts, such as the bone anabolic factor icaritin, which has been shown to promote osteogenic differentiation of stem cells and enhance bone healing in vivo, is a safe and technologically relevant alternative to the intensely debated growth factors delivery strategies. This unique initiative driven by a global consortium is expected to accelerate scientific progress in the important field of biomaterials and to foster strong scientific cooperation between China and Europe
Histopathological alterations in Senegal sole, Solea Senegalensis, from a polluted Huelva estuary (SW, Spain)
As a component of a large research project to evaluate the effects of contaminants on fish health in the field, histopathological studies have been conducted to help establish causal relationship between pollutants (heavy metals and aromatic polycyclic hydrocarbons—PAHs) and histopathological responses in Senegal sole, Solea senegalensis, from an estuary of SW Spain. Heavy metals (As, Zn, Cd, Pb, Cu and Fe) and 16 PAHs (proprietary USEPA) concentrations in water, sediment and tissues (liver and gills) and histopathological alterations in S. senegalensis from three sampling sites of Ria de Huelva estuary during 2004–2006 years have been analysed. The histopathological studies revealed seasonal and spatial differences in the lesion grade of alterations observing the highest lesion grades in fish from Odiel River and autumn season. No significant differences were observed in the alterations prevalence between sampling sites, but significant differences were observed between seasons observing the highest prevalence in autumn season. However, calculated IPAT demonstrated a low–moderate impact of pollutants on health fish. Correlations between histopathological alterations and pollutants analysed were observed being heavy metals the group that presented a major number of correlations with alterations in several organs of S. senegalensis. In evaluating the general health of fish, the use of histopathological studies in recommended for making more reliable assessment of biochemical responses in fish exposed to a variety of environmental stressors. Statistical analysis using semiquantitative data on pathological lesions can help to establish correlation between cause (stressor) and effect (biomarker)
Deciphering the mechanism underlying late-onset Alzheimer disease
Despite tremendous investments in understanding the complex molecular mechanisms underlying Alzheimer disease (AD), recent clinical trials have failed to show efficacy. A potential problem underlying these failures is the assumption that the molecular mechanism mediating the genetically determined form of the disease is identical to the one resulting in late-onset AD. Here, we integrate experimental evidence outside the 'spotlight' of the genetic drivers of amyloid-β (Aβ) generation published during the past two decades, and present a mechanistic explanation for the pathophysiological changes that characterize late-onset AD. We propose that chronic inflammatory conditions cause dysregulation of mechanisms to clear misfolded or damaged neuronal proteins that accumulate with age, and concomitantly lead to tau-associated impairments of axonal integrity and transport. Such changes have several neuropathological consequences: focal accumulation of mitochondria, resulting in metabolic impairments; induction of axonal swelling and leakage, followed by destabilization of synaptic contacts; deposition of amyloid precursor protein in swollen neurites, and generation of aggregation-prone peptides; further tau hyperphosphorylation, ultimately resulting in neurofibrillary tangle formation and neuronal death. The proposed sequence of events provides a link between Aβ and tau-related neuropathology, and underscores the concept that degenerating neurites represent a cause rather than a consequence of Aβ accumulation in late-onset AD
Mitochondria at the neuronal presynapse in health and disease
Synapses enable neurons to communicate with each other and are therefore a prerequisite for normal brain function. Presynaptically, this communication requires energy and generates large fluctuations in calcium concentrations. Mitochondria are optimized for supplying energy and buffering calcium, and they are actively recruited to presynapses. However, not all presynapses contain mitochondria; thus, how might synapses with and without mitochondria differ? Mitochondria are also increasingly recognized to serve additional functions at the presynapse. Here, we discuss the importance of presynaptic mitochondria in maintaining neuronal homeostasis and how dysfunctional presynaptic mitochondria might contribute to the development of disease