16 research outputs found

    Prion-specific and surrogate CSF biomarkers in Creutzfeldt-Jakob disease:diagnostic accuracy in relation to molecular subtypes and analysis of neuropathological correlates of p-tau and A beta 42 levels

    Get PDF
    The differential diagnosis of Creutzfeldt-Jakob disease (CJD) from other, sometimes treatable, neurological disorders is challenging, owing to the wide phenotypic heterogeneity of the disease. Real-time quaking-induced prion conversion (RT-QuIC) is a novel ultrasensitive in vitro assay, which, at variance with surrogate neurodegenerative biomarker assays, specifically targets the pathological prion protein (PrPSc). In the studies conducted to date in CJD, cerebrospinal fluid (CSF) RT-QuIC showed good diagnostic sensitivity (82\u201396%) and virtually full specificity. In the present study, we investigated the diagnostic value of both prion RT-QuIC and surrogate protein markers in a large patient population with suspected CJD and then evaluated the influence on CSF findings of the CJD type, and the associated amyloid-\u3b2 (A\u3b2) and tau neuropathology. RT-QuIC showed an overall diagnostic sensitivity of 82.1% and a specificity of 99.4%. However, sensitivity was lower in CJD types linked to abnormal prion protein (PrPSc) type 2 (VV2, MV2K and MM2C) than in typical CJD (MM1). Among surrogate proteins markers (14-3-3, total (t)-tau, and t-tau/phosphorylated (p)-tau ratio) t-tau performed best in terms of both specificity and sensitivity for all sCJD types. Sporadic CJD VV2 and MV2K types demonstrated higher CSF levels of p-tau when compared to other sCJD types and this positively correlated with the amount of tiny tau deposits in brain areas showing spongiform change. CJD patients showed moderately reduced median A\u3b242 CSF levels, with 38% of cases having significantly decreased protein levels in the absence of A\u3b2 brain deposits. Our results: (1) support the use of both RT-QuIC and t-tau assays as first line laboratory investigations for the clinical diagnosis of CJD; (2) demonstrate a secondary tauopathy in CJD subtypes VV2 and MV2K, correlating with increased p-tau levels in the CSF and (3) provide novel insight into the issue of the accuracy of CSF p-tau and A\u3b242 as markers of brain tauopathy and \u3b2-amyloidosis

    Avian Feathers as Bioindicators of the Exposure to Heavy Metal Contamination of Food

    Get PDF
    The aim of this study was to determine the possibility of using feathers of blue tit nestlings to assess the level of endogenous accumulation of lead. For this purpose we conducted an experiment with lead application to randomly chosen nestlings from eight randomly drawn broods. Five days after the exposure, feathers of lead-treated nestlings had significantly higher lead concentrations than control nestlings. This result suggests that feathers can be used as reliable non-destructive bioindicators to assess the level of heavy metals originating from contaminated food, which is of great significance for comparative studies on ecological consequences of pollution

    Cerebrospinal fluid biomarkers in trials for Alzheimer and Parkinson diseases

    No full text
    Alzheimer disease (AD) and Parkinson disease (PD) are the most common neurodegenerative disorders. For both diseases, early intervention is thought to be essential to the success of disease-modifying treatments. Cerebrospinal fluid (CSF) can reflect some of the pathophysiological changes that occur in the brain, and the number of CSF biomarkers under investigation in neurodegenerative conditions has grown rapidly in the past 20 years. In AD, CSF biomarkers are increasingly being used in clinical practice, and have been incorporated into the majority of clinical trials to demonstrate target engagement, to enrich or stratify patient groups, and to find evidence of disease modification. In PD, CSF biomarkers have not yet reached the clinic, but are being studied in patients with parkinsonism, and are being used in clinical trials either to monitor progression or to demonstrate target engagement and downstream effects of drugs. CSF biomarkers might also serve as surrogate markers of clinical benefit after a specific therapeutic intervention, although additional data are required. It is anticipated that CSF biomarkers will have an important role in trials aimed at disease modification in the near future. In this Review, we provide an overview of CSF biomarkers in AD and PD, and discuss their role in clinical trials
    corecore