94 research outputs found

    Penalized maximum likelihood and semiparametric second-order efficiency

    Full text link
    We consider the problem of estimation of a shift parameter of an unknown symmetric function in Gaussian white noise. We introduce a notion of semiparametric second-order efficiency and propose estimators that are semiparametrically efficient and second-order efficient in our model. These estimators are of a penalized maximum likelihood type with an appropriately chosen penalty. We argue that second-order efficiency is crucial in semiparametric problems since only the second-order terms in asymptotic expansion for the risk account for the behavior of the ``nonparametric component'' of a semiparametric procedure, and they are not dramatically smaller than the first-order terms.Comment: Published at http://dx.doi.org/10.1214/009053605000000895 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Regularization of statistical inverse problems and the Bakushinskii veto

    Get PDF
    In the deterministic context Bakushinskii's theorem excludes the existence of purely data driven convergent regularization for ill-posed problems. We will prove in the present work that in the statistical setting we can either construct a counter example or develop an equivalent formulation depending on the considered class of probability distributions. Hence, Bakushinskii's theorem does not generalize to the statistical context, although this has often been assumed in the past. To arrive at this conclusion, we will deduce from the classic theory new concepts for a general study of statistical inverse problems and perform a systematic clarification of the key ideas of statistical regularization.Comment: 20 page

    Estimating Mutual Information

    Get PDF
    We present two classes of improved estimators for mutual information M(X,Y)M(X,Y), from samples of random points distributed according to some joint probability density μ(x,y)\mu(x,y). In contrast to conventional estimators based on binnings, they are based on entropy estimates from kk-nearest neighbour distances. This means that they are data efficient (with k=1k=1 we resolve structures down to the smallest possible scales), adaptive (the resolution is higher where data are more numerous), and have minimal bias. Indeed, the bias of the underlying entropy estimates is mainly due to non-uniformity of the density at the smallest resolved scale, giving typically systematic errors which scale as functions of k/Nk/N for NN points. Numerically, we find that both families become {\it exact} for independent distributions, i.e. the estimator M^(X,Y)\hat M(X,Y) vanishes (up to statistical fluctuations) if μ(x,y)=μ(x)μ(y)\mu(x,y) = \mu(x) \mu(y). This holds for all tested marginal distributions and for all dimensions of xx and yy. In addition, we give estimators for redundancies between more than 2 random variables. We compare our algorithms in detail with existing algorithms. Finally, we demonstrate the usefulness of our estimators for assessing the actual independence of components obtained from independent component analysis (ICA), for improving ICA, and for estimating the reliability of blind source separation.Comment: 16 pages, including 18 figure

    Robust Matrix Completion

    Full text link
    This paper considers the problem of recovery of a low-rank matrix in the situation when most of its entries are not observed and a fraction of observed entries are corrupted. The observations are noisy realizations of the sum of a low rank matrix, which we wish to recover, with a second matrix having a complementary sparse structure such as element-wise or column-wise sparsity. We analyze a class of estimators obtained by solving a constrained convex optimization problem that combines the nuclear norm and a convex relaxation for a sparse constraint. Our results are obtained for the simultaneous presence of random and deterministic patterns in the sampling scheme. We provide guarantees for recovery of low-rank and sparse components from partial and corrupted observations in the presence of noise and show that the obtained rates of convergence are minimax optimal

    Affine-Invariant Dictionaries

    No full text
    [12] P. Jacquet, “Random infinite trees and supercritical behavior of collision resolution algorithms, ” IEEE Trans. Inform. Theory, vol. 39, pp

    Submitted to the Bernoulli Mirror averaging with sparsity priors

    Get PDF
    We consider the problem of aggregating the elements of a possibly infinite dictionary for building a decisionprocedurethataimsatminimizingagivencriterion.Alongwiththedictionary,anindependent identically distributed training sample is available, on which the performance of a given procedure can betested.Inafairlygeneralset-up,weestablishanoracleinequalityfortheMirrorAveragingaggregate with any prior distribution. By choosing an appropriate prior, we apply this oracle inequality in the context of prediction under sparsity assumption for the problems of regression with random design, density estimation and binary classification
    corecore