12 research outputs found

    HIV-1 nef suppression by virally encoded microRNA

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are 21~25-nucleotides (nt) long and interact with mRNAs to trigger either translational repression or RNA cleavage through RNA interference (RNAi), depending on the degree of complementarity with the target mRNAs. Our recent study has shown that HIV-1 nef dsRNA from AIDS patients who are long-term non-progressors (LTNPs) inhibited the transcription of HIV-1. RESULTS: Here, we show the possibility that nef-derived miRNAs are produced in HIV-1 persistently infected cells. Furthermore, nef short hairpin RNA (shRNA) that corresponded to a predicted nef miRNA (~25 nt, miR-N367) can block HIV-1 Nef expression in vitro and the suppression by shRNA/miR-N367 would be related with low viremia in an LTNP (15-2-2). In the 15-2-2 model mice, the weight loss, which may be rendered by nef was also inhibited by shRNA/miR-N367 corresponding to suppression of nef expression in vivo. CONCLUSIONS: These data suggest that nef/U3 miRNAs produced in HIV-1-infected cells may suppress both Nef function and HIV-1 virulence through the RNAi pathway

    Support for UNRWA's survival

    Get PDF
    The United Nations Relief and Works Agency for Palestine Refugees in the Near East (UNRWA) provides life-saving humanitarian aid for 5·4 million Palestine refugees now entering their eighth decade of statelessness and conflict. About a third of Palestine refugees still live in 58 recognised camps. UNRWA operates 702 schools and 144 health centres, some of which are affected by the ongoing humanitarian disasters in Syria and the Gaza Strip. It has dramatically reduced the prevalence of infectious diseases, mortality, and illiteracy. Its social services include rebuilding infrastructure and homes that have been destroyed by conflict and providing cash assistance and micro-finance loans for Palestinians whose rights are curtailed and who are denied the right of return to their homeland

    Investigation of the Long-Term Antibacterial Properties of Titanium by Two-Step Micro-Arc Oxidation Treatment

    No full text
    Recently, biofilm formation caused by bacterial adhesion and colonization has been recognized as the major cause of failure in orthopedic and dental implant surgeries. In this study, a customized micro-arc oxidation (MAO) treatment technique was developed to obtain desirable antibacterial properties on Ti surfaces. The two-step MAO treatment was applied in the fabrication of specimens with Ag and with/without Zn in their surface oxide layer. In order to simulate practical usage, surface analyses and immersion tests were performed to evaluate the incorporation of Ag and Zn into the resulting oxide layer and ion release behavior, respectively. Additionally, the antibacterial properties of the specimens after long-term immersion in physiological saline were evaluated using Gram-negative facultative anaerobic bacteria. The MAO-treated specimens containing Ag and Zn exhibited excellent antibacterial properties against Escherichia coli, which were sustained even after 6 months of immersion in physiological saline to simulate practical usage. Moreover, the Ag ions released from the surface oxide indicate the antibacterial properties of the specimen in the early stage, while the release of the corrosion products of Zn demonstrates its antibacterial properties in the later stage
    corecore