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A calcia mold, which is stable at high temperatures for dental precision casting of �-type titanium alloys such as Ti-29Nb-13Ta-4.6Zr
(TNTZ) with high melting point, has been developed. The applicability of the calcia mold to casting TNTZ was evaluated with focusing on the
mechanical properties of the casting in this study. The molten TNTZwas cast into the calcia mold of which dimensional accuracy was controlled
by adding pure zirconium particles. The tensile and fatigue properties of TNTZ cast into the calcia mold were examined with comparing those of
TNTZ cast into the magnesia mold, which is the conventional one for casting titanium alloys.

The tensile properties of TNTZ cast into the calcia and the magnesia molds are not markedly different. The fatigue strength of TNTZ cast
into the calcia mold in the low- and high-cycle fatigue life regions is slightly higher than that of TNTZ cast into the magnesia mold. Therefore,
the calcia mold is expected to be applicable to the dental precision casting of TNTZ. [doi:10.2320/matertrans.L-M2009828]
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1. Introduction

A demand of a dental precision casting of the titanium (Ti)
alloys has increased because of their high corrosion resist-
ance and high mechanical properties.1–3) For example, a Ti-
29Nb-13Ta-4.6Zr (TNTZ) alloy composed of non-toxic and
non-allergenic elements has been predicted to be the next-
generation biomaterial for prosthetic appliances and dental
implants.4–8) However conventional investment materials
aren’t sometimes suitable for the dental precision casting of
Ti alloys because the melting point of some Ti alloys are
much higher than that of a conventional Ti alloy, Ti-6Al-4V
ELI. Therefore, development of investment materials that
are stable at high temperatures is highly required.

Authors have focused on calcia particles as heat-resistant
investments.9,10) Calcia particles are among the most stable
oxides in terms of the free energy of formation, thus,
inhibition of the interface reaction is expected.11–13) In our
previous study, the surface of the calcia mold fabricated
with a mixture of fine (diameter < 0.3mm) and coarse
(diameter = 1–3mm) calcia particles was smooth and
showed no cracks or defects.9) The surface of the TNTZ
cast using the duplex-coated wax pattern with the fine pure
calcia slurry and crushed silica fiber-reinforced fine calcia
slurry were very fine without penetration.9) In addition,
dimensional accuracy of calcia mold and cast TNTZ could
be controlled by adding zirconium particles to calcia
mold.10) Moreover the surface reaction layer and volume
fraction of casting defects were restrained to a larger extent
by casting into the calcia mold than into the magnesia mold,
which is a conventional investment mold for casting
titanium alloys.10) These results indicate that the calcia
mold is suitable for the dental precision casting of TNTZ.
However, the mechanical properties of the cast TNTZ using
duplex-coated calcia mold are not yet clearly understood.

Investigating the mechanical properties of the TNTZ cast
using calcia mold is also needed in to evaluate the
applicability of the dental precision casting technique using
the calcia mold for TNTZ. Therefore, the mechanical
properties of the TNTZ cast using the calcia mold were
investigated with comparing those of the TNTZ cast using
the conventional magnesia mold in this study.

2. Materials and Methods

2.1 Materials
TNTZ disks with a diameter of 30mm and a thickness

of 13mm were prepared from a hot forged TNTZ bar
(Nb: 29.2mass%, Ta: 12.2mass%, Zr: 4.3mass%, Fe:
0.05mass%, N: 0.04mass%, O: 0.01mass% and Ti: balance)
with a diameter of 30mm and a length of 1000mm.

2.2 Wax pattern
A dog-bone-type wax pattern was formed using commer-

cially available paraffin wax. Schematic drawings of the dog-
bone-type wax pattern for tensile and fatigue is shown in
Fig. 1. Sprue and a sprue runner were set in the wax patterns
as shown in Fig. 1. Several wax patterns were coated with a
calcia slurry to obtain a smooth casting surface, as described
in detail below.

2.3 Mold
Two different sizes of electrically fused calcia particles

with diameters below 0.3mm (C1) and 1–3mm (C2) were
used in this study. The chemical composition of the
magnesia-based investment (hereafter magnesia investment)
is shown in Table 1. The bonding agent of the investment
used in this study was a methanol solution with 7mass%
calcia chloride, CaCl2. C1 particles were mixed with the
bonding agent at a ratio of 4 : 1 by weight, and a C1 slurry
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was obtained (slurry A). Then, 0.3mass% silica fiber meshes
(5� 5mm2, 2mm in thickness) and 12mass% 45-mm pure
zirconium particles (used as expansive components) were
mixed into slurry A (slurry B). Wax patterns were immersed
in slurry A and subsequently in slurry B. In order to avoid
mixed calcia particles, the wax patterns were coated at 1.2 ks
intervals. Mixture calcia particles of 40%C1 and 60%C3 by
weight were used as the investment material. The mixed
calcia particles were further mixed with the bonding agent at
a ratio of 93 (calcia particles): 7 (bonding agent) by weight
and then invested in a mold frame with the wax pattern
obtained with the calcia slurry coatings A mold frame with a
diameter of 70mm and a length of 100mm was used. The
invested molds were held in a vacuum desiccator (0:06�
10�6 Pa) for 86.4 ks at room temperature. Multiple baking
processes were then carried out with the molds using an
electrical muffle furnace. A schematic image of the multiple
baking processes for the calcia mold is shown in Fig. 2(a).

A commercially available magnesia-based investment
with alumina cement was also used as a control. The
chemical composition of the magnesia investment is shown
in Table 1. The magnesia investment was mixed with
distilled water at a ratio of 100 (magnesia investment): 13
(distilled water) by weight and then invested in a mold frame
with the untreated wax patterns. The invested molds were
dried in air for 3.6 ks and baked at 1373K for 3.6 ks
(Fig. 2(b)). Hereafter the calcia and magnesia molds will be
called moldcalcia and moldmegnaseia, respectively.

2.4 Casting
Casting of the TNTZ was carried out using an argon

pressure-type dental precision casting machine. The TNTZ
disks were melted for 50 s under 10:2� 10�6 Pa by a 300-A
mono arc and then cast under 0.7MPa argon pressure using
the calcia and the magnesia molds as described above
(hereafter the TNTZ cast using the moldcalcia and moldmagnesia

will be called TNTZcalcia and TNTZmagnesia, respectively).

2.5 Tensile test
Tensile tests of the cast TNTZ were carried out. Before

testing, only TNTZmagnesia was sandblasted to remove the
thick surface reaction layer. (TNTZcalcia was not need to
sandblast.) Tensile tests were carried out using an instron-
type testing machine having a capacity of 9.8 kN at a
crosshead speed of 8:33� 10�6 m�s�1 at room temperature.
A load was detected using a load cell of the testing machine.
The elongation was measured using a strain gauge directly
attached to the cast TNTZ. The fractured surface of the cast
TNTZ was observed using a scanning electron microscopy
(SEM). The area of shrinkages occupying the fractured
surface was measured. The volume fraction of shrinkage, V ,
was calculated by the following

V ¼ D=A; ð1Þ

where D and A are the area of shrinkages, total area,
respectively. In order to distinguish cast defects from
dimples, only cast defects over 10 mm were evaluated.

Table 1 Chemical compositions of electrically fused calcia (a) and

magnesia-based investment (b).

(a) Electrically fused calsia (mass%)

MgO SiO2 Al2O3 Fe2O3 CaO

0.67 0.43 0.02 0.02 bal.

(b) Magnesia-based investment (mass%)

SiO2 Na2O Fe2O3 Al2O3 MgO

1.64 0.59 0.55 0.37 bal.
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Fig. 1 Schematic drawing of the wax pattern for tensile and fatigue test
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Fig. 2 Schematic drawings of the multiple baking processes for the calcia (a) and magnesia (b) molds.
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2.6 Fatigue test
Fatigue tests of the cast TNTZ were carried using an

electro-servo-hydraulic machine. Each fatigue test was
performed at a frequency of 10Hz with a stress ratio,
R ¼ 0:1, under the tension-tension mode in air at room
temperature. The maximum cycle stress at which a specimen
was still unfailing at 107 cycles was defined as the fatigue
limit in this study. The fractured surface of the cast TNTZ
was observed using an SEM, and the volume fraction of the
casting defects was calculated. In order to distinguish cast
defects from dimples, only cast defects over 10 mm were
evaluated.

3. Results and Discussion

3.1 Tensile properties of cast TNTZ
Figure 3 shows the tensile properties of the TNTZcalcia and

TNTZmagnesia. Mechanical properties of the TNTZcalcia, i.e.,
the tensile strength, the 0.2% proof strength and the
elongation, are almost the same as those of the TNTZmagnesia.
However, the error bar of the mechanical properties of
the TNTZcalcia (around 5%) is smaller than that of the
TNTZmagnesia (around 10%). The tensile strength and elon-
gation of the Au-Ag-Pd alloy, which is a conventional dental
cast alloy, are 400–600MPa and 10–40%, respectively.14)

Therefore, the mechanical properties of the TNTZcalcia are
the achieved properties of a conventional cast alloy, and the
TNTZcalcia can be used as a dental cast alloy.

Figure 4 shows the SEM fractographs of the TNTZcalcia

after a tensile test. A ductile fracture surface with dimples is

observed on the TNTZcalcia, and the average diameter of the
dimple at the fracture surface is over 10 mm. In addition, a
brittle fractured surface with cleavage facets is observed at
a surface reaction layer of the TNTZcalcia. Casting defects,
such as shrinkage and the appearance of pores, are observed
on the fracture surface. The volume fraction of the casting
defects on the tensile facture surface of the TNTZcalcia and
TNTZmagnesia is shown in Fig. 5. The volume fraction of the
casting defects of the TNTZcalcia is lower than that of the
TNTZmagnesia. Figure 6 shows the distribution of casting
defects on the tensile fracture surface of the TNTZcalcia and
TNTZmagnesia. Number and distribution of diameter of the
casting defects at the TNTZcalcia are smaller than those of
the TNTZmagnesia. Casting defects over 40 mm (large casting
defects) are observed on the fracture surface of the TNTZcalcia

and TNTZmagnesia. These large casting defects are not
observed at the cross section of the TNTZcalcia and
TNTZmagnesia before the tensile test. Cracks are believed to
initiate from casting defects. Stress concentration occurs at
the site of the casting defects and casting defects become
bigger. TNTZ is fractured through a large casting defect that
serves as a crack initiation area.

The relationship between the tensile strength and volume
fraction of casting defects on the cross section of the
TNTZcalcia and TNTZmagnesia is shown in Fig. 7. In spite of
the increasing volume faction of casting defects, the tensile
strength of the TNTZcalcia is almost the same. On the other
hand, the tensile properties of the TNTZmagnesia decreased
with an increase in the volume fraction of casting defects.
Dispersion of the tensile properties of the TNTZcalcia is
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Fig. 3 Tensile properties of the TNTZcalcia (a) and TNTZmagnesia (b).
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Fig. 4 SEM fractographs of the TNTZcalcia after the tensile test.
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considered to be smaller than that of the TNTZmagnesia, since
the number and distribution of diameter of the casting defects
at the TNTZcalcia are smaller than those of the TNTZmagnesia.

3.2 Fatigue properties of cast TNTZ
The S-N curves obtained from fatigue tests on the

TNTZcalcia, the TNTZmagnesia, and forged TNTZ solutionized
at 1063K for 3.6 ks are shown in Fig. 8.15) Maximum
masticatory stress is also shown in the same figure for
comparison.16) The fatigue strength of the TNTZcalcia is
slightly higher than that of the TNTZmagnesia in both the low-
cycle-fatigue life region, where the number of cycles to
failure is less than 104 cycles, and the high-cycle-fatigue life
region, where the number of cycles to failure exceeds 105

cycles. While exact fatigue limits cannot be obtained,
the fatigue limits of the TNTZcalcia and TNTZmagnesia are
estimated to be almost 150MPa and 140MPa, respectively.
Therefore, the fatigue limit of the TNTZcalcia is lower than
that of the forged TNTZ (almost 280MPa). Because cast
TNTZ has many casting defects and a dendritic structure, its
resistance to fatigue crack initiation is small. As a result, the
fatigue limit of cast TNTZ is lower than that of the forged
TNTZ. Typical SEM fractographs of the TNTZcalcia and
TNTZmagnesia in the low- and high-cycle-fatigue life regions
after fatigue tests are shown in Fig. 9 and Fig. 10. Fatigue
cracks tend to initiate from the surface of the TNTZcalcia and
TNTZmagnesia in the low-cycle-fatigue life region. The crack
initiation sites are, almost always, casting defects or �-case
at the surface. In addition, the fatigue strength of cast
TNTZ seemed to decrease when a fatigue crack was initiated

from casting defects. Striations are observed on the stable
fracture surface, and equiaxed dimples are observed on the
fast fracture surface. Fatigue cracks tended to initiate from
the casting defect on the inside of the TNTZcalcia and
TNTZmagnesia in the high-cycle-fatigue life region. In this
case, striations were observed on the stable fracture, and
equiaxed dimples were observed on the fast fracture surface.
In addition, the interval of striations in the high-cycle-fatigue
life regions was narrower than that in the low-cycle-fatigue
life region. It is commonly believed that fatigue strength
depends on the surface roughness of a material. However, the
main crack initiation sites of cast TNTZ are casting defects
on the surface or the inside of cast TNTZ. Stress concen-
tration is easily generated from a casting defect rather than on
the surface of the cast TNTZ because casting defects are
large, even though cracks also initiate on the surface of cast
TNTZ. Therefore, it is considered that the fatigue strength
of cast TNTZ strongly depends on casting defects.

Figure 11 shows the volume fraction of the casting
defects on a fatigue fracture surface of the TNTZcalcia and
TNTZmagnesia in the low-cycle-fatigue life region. The
volume fraction of the casting defects on the fatigue fracture
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surface of the TNTZcalcia is 2–3% lower than that of the
TNTZmagnesia. Figure 12 shows the distribution of casting
defects on the fatigue fracture surface of TNTZcalcia and
TNTZmagnesia in the low-cycle-fatigue life region. Casting
defects over 60 mm are observed on the fracture surface of the
TNTZcalcia and TNTZmagnesia. More coarse defects are present
in this case than in a cross section of the TNTZcalcia before
fatigue test because a crack propagates through large casting

defects during the fatigue test. In addition, the maximum
diameter of casting defects of the TNTZcalcia and
TNTZmagnesia is 70 mm and 80 mm, respectively. The number
and distribution of the diameter of casting defects in the
TNTZcalcia are smaller than those in the TNTZmagnesia. Since
resistance to fatigue crack initiation is higher in the
TNTZcalcia than in the TNTZmagnesia, the fatigue strength of
the TNTZcalcia is considered to be higher than that of the
TNTZmagnesia in the low-cycle-fatigue life region.

In general, masticatory stress is said to be 20–230MPa
during a meal15) and the estimated fatigue limit of TNTZcalcia

is lower than that of this masticatory force. Therefore,
improved fatigue strength of the TNTZcalcia is required for
dental prosthetic appliances. Casting defects are dominant
factors of fatigue properties, as described above. Therefore,
improvement of fatigue strength is anticipated with the
inhibition of casting defects. In addition, the fatigue strength
of forged TNTZ is improved by heat treatment.16) Therefore,
an improvement of fatigue strength of the TNTZcalcia is also
anticipated with the use of heat treatments.

4. Conclusions

The mechanical properties of the TNTZ for biomedical
applications cast using the calcia mold were investigated in
this study. The following results were obtained.
(1) The difference in the tensile properties between the
TNTZcalcia and TNTZmagnesia is very small.
(2) The fatigue strength of TNTZcalcia in the low- and high-
cycle-fatigue life regions is slightly higher than that of
TNTZmagnesia.
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