2,942 research outputs found

    Coorbital Satellites of Saturn: Congenital Formation

    Full text link
    Saturn is the only known planet to have coorbital satellite systems. In the present work we studied the process of mass accretion as a possible mechanism for coorbital satellites formation. The system considered is composed of Saturn, a proto-satellite and a cloud of planetesimals distributed in the coorbital region around a triangular Lagrangian point. The adopted relative mass for the proto-satellite was 10^-6 of Saturn's mass and for each planetesimal of the cloud three cases of relative mass were considered, 10^-14, 10^-13 and 10^-12 masses of Saturn. In the simulations each cloud of planetesimal was composed of 10^3, 5 x 10^3 or 10^4 planetesimals. The results of the simulations show the formation of coorbital satellites with relative masses of the same order of those found in the saturnian system (10^-13 - 10^-9). Most of them present horseshoe type orbits, but a significant part is in tadpole orbit around L_4 or L_5. Therefore, the results indicate that this is a plausible mechanism for the formation of coorbital satellites.Comment: 10 pages, 9 figures, 4 table

    Terrestrial Planet Formation in a protoplanetary disk with a local mass depletion: A successful scenario for the formation of Mars

    Full text link
    Models of terrestrial planet formation for our solar system have been successful in producing planets with masses and orbits similar to those of Venus and Earth. However, these models have generally failed to produce Mars-sized objects around 1.5 AU. The body that is usually formed around Mars' semimajor axis is, in general, much more massive than Mars. Only when Jupiter and Saturn are assumed to have initially very eccentric orbits (e \sim 0.1), which seems fairly unlikely for the solar system, or alternately, if the protoplanetary disk is truncated at 1.0 AU, simulations have been able to produce Mars-like bodies in the correct location. In this paper, we examine an alternative scenario for the formation of Mars in which a local depletion in the density of the protosolar nebula results in a non-uniform formation of planetary embryos and ultimately the formation of Mars-sized planets around 1.5 AU. We have carried out extensive numerical simulations of the formation of terrestrial planets in such a disk for different scales of the local density depletion, and for different orbital configurations of the giant planets. Our simulations point to the possibility of the formation of Mars-sized bodies around 1.5 AU, specifically when the scale of the disk local mass-depletion is moderately high (50-75%) and Jupiter and Saturn are initially in their current orbits. In these systems, Mars-analogs are formed from the protoplanetary materials that originate in the regions of disk interior or exterior to the local mass-depletion. Results also indicate that Earth-sized planets can form around 1 AU with a substantial amount of water accreted via primitive water-rich planetesimals and planetary embryos. We present the results of our study and discuss their implications for the formation of terrestrial planets in our solar system.Comment: Accepted for publication in The Astrophysical Journa

    Complete integrability of derivative nonlinear Schr\"{o}dinger-type equations

    Full text link
    We study matrix generalizations of derivative nonlinear Schr\"{o}dinger-type equations, which were shown by Olver and Sokolov to possess a higher symmetry. We prove that two of them are `C-integrable' and the rest of them are `S-integrable' in Calogero's terminology.Comment: 14 pages, LaTeX2e (IOP style), to appear in Inverse Problem

    Microscopic Evidence for Evolution of Superconductivity by Effective Carrier Doping in Boron-doped Diamond:11B-NMR study

    Full text link
    We have investigated the superconductivity discovered in boron (B)-doped diamonds by means of 11B-NMR on heteroepitaxially grown (111) and (100) films. 11B-NMR spectra for all of the films are identified to arise from the substitutional B(1) site as single occupation and lower symmetric B(2) site substituted as boron+hydrogen(B+H) complex, respectively. A clear evidence is presented that the effective carriers introduced by B(1) substitution are responsible for the superconductivity, whereas the charge neutral B(2) sites does not offer the carriers effectively. The result is also corroborated by the density of states deduced by 1/T1T measurement, indicating that the evolution of superconductivity is driven by the effective carrier introduced by substitution at B(1) site.Comment: 4 pages, 6 figures, to be published in Phys. Rev. B (Brief report

    Space biology initiative program definition review. Trade study 1: Automation costs versus crew utilization

    Get PDF
    A significant emphasis upon automation within the Space Biology Initiative hardware appears justified in order to conserve crew labor and crew training effort. Two generic forms of automation were identified: automation of data and information handling and decision making, and the automation of material handling, transfer, and processing. The use of automatic data acquisition, expert systems, robots, and machine vision will increase the volume of experiments and quality of results. The automation described may also influence efforts to miniaturize and modularize the large array of SBI hardware identified to date. The cost and benefit model developed appears to be a useful guideline for SBI equipment specifiers and designers. Additional refinements would enhance the validity of the model. Two NASA automation pilot programs, 'The Principal Investigator in a Box' and 'Rack Mounted Robots' were investigated and found to be quite appropriate for adaptation to the SBI program. There are other in-house NASA efforts that provide technology that may be appropriate for the SBI program. Important data is believed to exist in advanced medical labs throughout the U.S., Japan, and Europe. The information and data processing in medical analysis equipment is highly automated and future trends reveal continued progress in this area. However, automation of material handling and processing has progressed in a limited manner because the medical labs are not affected by the power and space constraints that Space Station medical equipment is faced with. Therefore, NASA's major emphasis in automation will require a lead effort in the automation of material handling to achieve optimal crew utilization

    Symmetrically coupled higher-order nonlinear Schroedinger equations: singularity analysis and integrability

    Full text link
    The integrability of a system of two symmetrically coupled higher-order nonlinear Schr\"{o}dinger equations with parameter coefficients is tested by means of the singularity analysis. It is proven that the system passes the Painlev\'{e} test for integrability only in ten distinct cases, of which two are new. For one of the new cases, a Lax pair and a multi-field generalization are obtained; for the other one, the equations of the system are uncoupled by a nonlinear transformation.Comment: 12 pages, LaTeX2e, IOP style, final version, to appear in J.Phys.A:Math.Ge

    Integrable discretizations of derivative nonlinear Schroedinger equations

    Full text link
    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations.Comment: 24 pages, LaTeX2e (IOP style), final versio

    Timesaving Double-Grid Method for Real-Space Electronic-Structure Calculations

    Full text link
    We present a simple and efficient technique in ab initio electronic-structure calculation utilizing real-space double-grid with a high density of grid points in the vicinity of nuclei. This technique promises to greatly reduce the overhead for performing the integrals that involves non-local parts of pseudopotentials, with keeping a high degree of accuracy. Our procedure gives rise to no Pulay forces, unlike other real-space methods using adaptive coordinates. Moreover, we demonstrate the potential power of the method by calculating several properties of atoms and molecules.Comment: 4 pages, 5 figure

    Anti-arthritic actions of β-cryptoxanthin against the degradation of articular cartilage in vivo and in vitro

    Get PDF
    An inverse correlation between the morbidity of rheumatoid arthritis and daily intake of β-cryptoxanthin has been epidemiologically shown. In this study, we investigated the effects of β-cryptoxanthin on the metabolism of cartilage extracellular matrix in vivo and in vitro. Oral administration of β-cryptoxanthin (0.1–1 mg/kg) to antigen-induced arthritic rats suppressed the loss of glycosaminoglycans in articular cartilage, which is accompanied by the interference of aggrecanase-mediated degradation of aggrecan. Inhibition of the interleukin 1α (IL-1α)-induced aggrecan degradation by β-cryptoxanthin was also observed with porcine articular cartilage explants in culture. β-Cryptoxanthin (1–10 μM) dose-dependently down-regulated the IL-1α-induced gene expression of aggrecanase 1 (ADAMTS-4) and aggrecanase 2 (ADAMTS-5) in cultured human chondrocytes. Moreover, β-cryptoxanthin was found to augment the gene expression of aggrecan core protein in chondrocytes. These results provide novel evidence that β-cryptoxanthin exerts anti-arthritic actions and suggest that β-cryptoxanthin may be useful in blocking the progression of rheumatoid arthritis and osteoarthritis
    corecore