7 research outputs found

    TPICDS: A Two-Phase Parallel Approach for Incremental Clustering of Data Streams

    Get PDF
    Parallel and distributed solutions are essential for clustering data streams due to the large volumes of data. This paper first examines a direct adaptation of a recently developed prototype-based algorithm into three existing parallel frameworks. Based on the evaluation of performance, the paper then presents a customised pipeline framework that combines incremental and twophase learning into a balanced approach that dynamically allocates the available processing resources. This new framework is evaluated on a collection of synthetic datasets. The experimental results reveal that the framework not only produces correct final clusters on the one hand, but also significantly improves the clustering efficienc

    Evidence for a spike in mantle carbon outgassing during the Ediacaran period

    No full text
    © 2017 The Author(s). Long-term cycles in Earth\u27s climate are thought to be primarily controlled by changes in atmospheric CO2 concentrations. Changes in carbon emissions from volcanic activity can create an imbalance in the carbon cycle. Large-scale changes in volcanic activity have been inferred from proxies such as the age abundance of detrital zircons, but the magnitude of carbon emissions depends on the style of volcanism as well as the amount. Here we analyse U-Pb age and trace element data of detrital zircons from Antarctica and compare the results with the global rock record. We identify a spike in CO2-rich carbonatite and alkaline magmatism during the Ediacaran period. Before the Ediacaran, secular cooling of the mantle and the advent of cooler subduction regimes promoted the sequestration of carbon derived from decarbonation of subducting oceanic slabs in the mantle. We infer that subsequent magmatism led to the extensive release of carbon that may at least in part be recorded in the Shuram-Wonoka carbon isotope excursion. We therefore suggest that this pulse of alkaline volcanism reflects a profound reorganization of the Neoproterozoic deep and surface carbon cycles and promoted planetary warming before the Cambrian radiation

    Effects of Root Exudates in Microbial Diversity and Activity in Rhizosphere Soils

    No full text
    corecore