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Abstract— Parallel and distributed solutions are essential for clustering data 
streams due to the large volumes of data. This paper first examines a direct 
adaptation of a recently developed prototype-based algorithm into three existing 
parallel frameworks. Based on the evaluation of performance, the paper then 
presents a customised pipeline framework that combines incremental and two-
phase learning into a balanced approach that dynamically allocates the available 
processing resources. This new framework is evaluated on a collection of 
synthetic datasets. The experimental results reveal that the framework not only 
produces correct final clusters on the one hand, but also significantly improves 
the clustering efficiency.  

Keywords-Big Data, Data Stream Clustering Algorithms, Distributed and 
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1  Introduction 

Recent advances in information and networking technologies and their applications in 
almost every sector of life have led to a rapid growth of the massive amount of data 
known as Big Data [1]. One of the most important characteristics of big data is its 
velocity, which means that data may arrive and require processing at different speeds. 
While for some applications, the arrival and processing of data can be performed in an 
offline batch processing style, others require continuous and real-time analysis of 
collections of incoming data (known as data chunks) ([2][3][4]). Data stream cluster-
ing is defined as a grouping of data in light of frequently arriving new data chunks for 
understanding the underlying group patterns that may change over time [5]. 

It is the sheer volume of data arriving at high and variable speeds of accumulation 
that deems normal clustering algorithms inefficient and incapable of dealing with the 
demand [6]. Therefore, distributed and parallel algorithms are the ultimate solution 
for analysing big data streams in reality, which is evident in the more recent research 
work ([4][7][8]). Distributed and parallel solutions offer several benefits such as 
reduction of the overall response time, improved scalability of solutions and 
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suitability for applications of distributed nature such as sensor networks, social media, 
Internet of Things (IoT), etc. [9]. 

Multi-core processor commodity computers are widely used nowadays. At a higher 
but affordable price, a computer can have up to 72 core processors. As the computer 
hardware technology advances, cheaper and more core processors will become 
available. The question then is how to utilise the available processing resources on 
board of a local machine. In this paper, we argue that algorithms for data stream 
clustering should be first implemented on a multi-core parallel processing framework 
by making the best use of the available processors in a local machine before running 
the algorithms in a distributed network of computers.  

This paper is therefore concerned with how to parallelise most recent techniques 
for clustering data streams. In general, the paper promotes a two-phase parallel 
approach for incrementally clustering data streams (TPICDS) where processors will 
incrementally maintain local clustering models in parallel at the online phase, and 
local cluster models can be merged into a global cluster model at the offline phase. In 
particular, the paper investigates the parallelisation of a recent algorithm EINCKM 
[10] in the TPICDS framework because of the algorithm’s modular structure and 
performance over other existing algorithms. The work consists of two parts. In the 
first part, the paper investigates how the EINCKM algorithm adapts three typical 
parallelisms in existence. Based on a performance evaluation of the adapted 
parallelisms inside the algorithm, the paper further proposes a parallel pipeline with 
optimised and dynamic allocations of processing resources. Experimental results 
show that the proposed solution not only produces correct final clusters, but also 
significantly improves the efficiency. 

The rest of this paper is organised as follows. Section 2 explains the related work 
on distributed and parallel data stream clustering algorithms in the literature, and 
propose the TPICDS approach at the end. Section 3 explains the EINCKM algorithm 
adaptation of the existing parallelisms. Section 4 presents the proposed optimised and 
dynamic parallel pipelines. Section 5 concludes the work and outlines possible future 
directions of this research. 

2 Related Work 

2.1 Computational Approaches 

Two approaches for mining data streams are in existence: incremental and two-phase 
learning. With the incremental methods (e.g. STREAM [11]), a global model of clus-
ters is iteratively developed to reflect current modifications made by incoming data 
chunks. The two-phase approach (e.g. CluStream [12]) divides the clustering process 
into two phases, i.e. an online phase where the data records are summarised into small 
intermediate micro-clusters, and an offline phase where the micro-clusters are pro-
cessed into final clusters at a query point [13]. While the incremental algorithms al-
ways provide an accumulated view of global clusters at the arrival point of an incom-
ing data chunk at the expense of continuous clustering, the two-phase algorithms pro-



vide such a view of clusters at the point of the query without constantly finding final 
clusters. Therefore, it can be argued that incremental algorithms are more suited for 
real-time response systems [4]. 

2.2 Data Stream Clustering Algorithm EINCKM 

EINCKM is a prototype-based algorithm for clustering data streams and identifying 
outlier objects [10]. Taking the incremental learning approach, the algorithm divides 
the clustering process into three sequential steps: Build Clusters, Merge, and Prune. 
Build Clusters uses the K-Means method to find the clusters in the input data chunk. 
Merge integrates the newly formed clusters with existing ones. Prune detects outliers 
and checks the concept drift using a fading function. The algorithm applies a 
heuristic-based method to estimate the number of clusters, a radius-based technique to 
merge overlapped clusters, and a variance-based mechanism to prune outliers. The 
algorithm is modular and adaptable to further improvements. However, the algorithm 
is a sequential algorithm where the three key operations must be performed in order. 
It is, therefore, useful to explore how to parallelise the algorithm. 

2.3 Distributed and Parallel Frameworks  

Depending on how the input data is organised, two categories of distributed and paral-
lel data stream clustering algorithms exist: object-based where the data record is a 
complete data object and attribute-based where each data item is an attribute value. 
Each category may take either incremental or two-phase learning approach. 

For the incremental learning of object-based clusters, the central site receives the 
input data streams, divides it into chunks and sends them to the remote sites. Upon 
receiving the local clustering models from the remote sites, the central site produces 
the final output clusters. Bandyopadhyay et al. have used this approach for clustering 
data streams in a peer-to-peer environment [14]. Gao et al. showed an enhanced 
Apache Storm framework for clustering social media data, by adding another process 
between the central site and the participant remote sites for synchronising changes to 
the local models to avoid a bottleneck in communications [15]. Incremental learning 
of clusters from attribute streams is similar. The only differences are that each remote 
site receives an input attribute stream directly without the central site to distribute the 
data and that upon receiving the local cluster models, the central site integrates the 
local attribute models into a global object-based cluster model. Rodrigues et al. used 
this approach in the ODAC algorithm to cluster attribute streams [16]. The 
incremental learning is simple, easy to implement and efficient. However, extensive 
communication with the central site can result in bottlenecks. Besides, integrating all 
attribute clusters with a central site becomes infeasible when the dimensionality of 
data streams are high. 

In the two-phase learning of object-based clusters, the local models are saved in a 
local buffer memory on each remote site, and are sent to the central site when there is 
a query from the user or there are significant changes in the local models [17][18]. 
However, heavy computation is needed with the central site to  obtain the final  output  



 
Fig. 1. Proposed TPICDS framework 

clusters due to the large number of micro-clusters. Guerrieri and Montresor presented 
an improvement by making the remote sites communicate to reduce the number of 
micro-clusters [19]. Karunaratne et al. also made an improvement using Apache 
Storm where the remote sites save their local clustering models in a globally shared 
memory so that the designated second central site processes the local clusters into the 
final clusters [19]. The two-phase learning of clusters from attribute streams is similar 
to incremental learning by using buffers for local models. Gama et al. adopted this 
approach in the DGClust algorithm to cluster data streams in sensor networks [20]. 
The algorithm reduces data dimensions and hence communications needed.   

2.4 The Proposed TPICDS Framework 

The proposed framework TPICDS combines the two computational approaches in the 
two-phase hybrid system. At the online phase, the first central site receives the data 
streams, divides it into chunks, and sends then to the remote sites. Each remote site 
receives its own data chunk, creates and maintains its own local cluster models in the 
incremental fashion. At the offline phase, the second central site receives the local 
models from the remote sites and presents the final global clusters (see Fig. 1). Our 
research aims to embed the EINCKM algorithm within the proposed framework 
where the second central site uses the same merge strategy to form the global 
clustering model. 

3 Adapting EINCKM to the Existing Parallelisms 

In this section, we first briefly summarise three typical parallel frameworks that 
already exist. We then describe how the EINCKM algorithm can intuitively adapt to 
each framework. We then evaluate the performance of each adaptation empirically 
using synthesised datasets.  

3.1 Existing Parallel Frameworks 

Three typical parallel frameworks exist. The replication, hereby known as embarrass-
ingly parallel or basic parallelism (BP), simply makes multiple copies of the entire 
algorithm and then runs each copy on each processor [21]. Each processor must 



complete all operations of the algorithm before receiving next new data inputs. The 
framework has the pros of being simple, and directly employs the principle of divide 
and conquer by sharing the processing of input data by the available processors. We 
use this framework as a basic benchmark for performance evaluations later. 

The parallel pipeline (PP) is an improvement of the basic parallelism to streamline 
several processors in a pipeline [22], which works as follows. A present processor 
receives the output of a previous processor as its input, processes the data, generates 
the output, and passes it on to the next processor. Each processor has a certain degree 
of independence so that when the next processor processes its output, the present 
processor takes and processes its next data input. This framework not only divides the 
workload among different processors but also further improve the degree of 
parallelism within a sequential pipeline.  

MapReduce parallel pipeline (MRPP) is a further modification of PP [23]. First, 
data stored in memory are divided into partitions, and each partition is sent to a 
different processor (Mapping). Each processor processes the data within the partition 
and the processed outputs are then hashed to fewer processors on another layer to 
further process them (Reducing). The hashing can be determined by the relevance of 
the outputs. 

3.2 Algorithm Adaptation  

All adaptations of the algorithm to the existing frameworks mentioned above require 
dividing the available processing resources into central and remote sites (in this 
context, a site is a single core processor on the same computer). The adaptation of the 
algorithm to the basic parallelism is straightforward: each remote site finds the 
clusters from the incoming chunk, merges them with its own existing clusters, prunes 
them, and saves the resulting clusters into its own local buffer memory.  

The adaptation of the algorithm to the PP framework is done as follows. We first 
divide all the available remote sites into groups of three sites, and then arrange the 
three sites into a pipeline. We then designate the first of the three sites for the Build 
Clusters function, the second for the Merge function, and the third for the Prune 
function. When the Build Cluster site finishes the current chunk, it sends the clusters 
to the Merge site. When the Merge site merges the clusters from the chunk with the 
existing ones, the Build Cluster site starts discovering clusters from the next chunk. 
When the Merge site finishes its task of merging clusters, it sends the results to the 
Prune site, and then starts working on the new clusters from the Build Cluster site. 
The Prune site works in a similar fashion.  

For the adaptation of the MRPP framework, the first central site in TPICDS 
performs the mapping operation. The remote sites for the Build Cluster function is 
modified to include a further function for the hashing, i.e. assigning similar local 
clusters to a specific Merge site. More precisely, a Build Cluster site checks the 
closest cluster’s centroids and send them to the same merger site, and a Merge site 
receives clusters from different Build Cluster sites to build a regional model of 
clustering. After that, the Prune site conducts the pruning of regional models and 
sends them to the second central site in TPICDS. The difference between the PP 



adaptation and the MRPP adaptationb is that the Merge site in the PP framework 
receives clusters only from the Build Cluster site within the same pipeline, whereas 
the Merge site in the MRPP merges clusters from more than one Build Cluster site in 
different pipelines.       

3.3 Empirical Evaluation  

In order to evaluate empirically the performance of each adaptation, we created two 
collections of synthetic datasets, DS1 and DS2. Each collection include six datasets of 
different sizes, i.e. 100,000, 200,000, 500,000, 1,000,000, 1,500,000 and 2,000,000 
data points of two dimensions. To simulate various sizes, shapes and numbers of 
clusters, we used Gaussian distributions to randomly generate spherical shape clusters 
with different means, variances and number of members. DS1 and DS2 respectively 
have four and thirty clusters. We acknowledge the limitations of synthesised datasets 
in expressing the characteristics of data in reality, but synthesised datasets do allow us 
to check the correctness of clustering by comparing the resulting clusters to known 
clusters. 

A computer with 12 2.8GHz core processors and 16 GB memory under Microsoft 
Windows7 was used to conduct the experiment. MATLAB 2017a was used to 
implement the adapted algorithms and program the experiment scripts. For each 
experiment, we randomly selected data points from the dataset to form data chunks of 
1000 data points. The random selection simulates the situation where there is no 
control on the order of the arriving data points. To minimise the random effect of the 
selected data points to the performance of the algorithms for a specific experiment, 
we repeated each experiment 100 times, and then take the average of the speeds of 
execution in seconds. The processors on the machine are configured as follows. For 
the BP framework, we allocate three processors each of which has the entire 
EINCKM algorithm. For the PP and MRPP frameworks, we allocate three processors 
(one for Build Cluster, one for Merge, and one for Prune) to form one parallel stream. 
We allocate two processors serving as the two central sites in TPICDS. Fig. 2 shows 
the performance of the adapted EINCKM algorithms in terms of execution time. 

Among the adapted algorithms, the BP adaptation is slower than the PP and 
MRPP. The two pipeline adaptations show consistent faster speeds due to the 
additional parallelism  gained  from  the  pipeline  frameworks.  However,  the  MRPP 

 
                                    (a) DS1                                                                          (b) DS2 

Fig. 2. Adapted algorithms performance in execution time 



adaptation consumes more time than the PP adaptation in mapping and hashing 
similar local clusters to a merger. The PP adaptation, however, may still have 
potential delays because the processor configuration on each pipeline was fixed, and 
some processors within the pipeline may have to wait for the outputs from other 
processors. Therefore, optimised and dynamic allocations of processors to the needed 
steps should be the right way to further exploit the parallelism. 

4 Optimised and Dynamic Parallel Pipeline Frameworks 

4.1 An Optimised Parallel Pipeline Framework  

The idea behind optimised parallel pipeline (OPP) framework is to decide how many 
processors should be statically allocated for each step of the EINCKM algorithm by 
analysing the time complexity of the algorithm. The time complexity of the entire 
algorithm is estimated by the sum of the time complexity for each of the three key 
functions [10]. Let R represent the number of chunks, N the total number of data 
points in a chunk plus the outliers, K the number of clusters, I the number of iterations 
until the clusters converge, T the number of clusters of the previous iteration, n the 
maximum number of data points in a new/existing cluster, k the number of clusters 
from a new chunk, and S the number of output clusters of merge function. The time 
complexity is ������ for the Build Cluster function, ���	
 + �
�� for the Merge 
function, and ���
� for the Prune function. The expressions indicate that the Merge 
function takes the longest amount of time in the worst case. This is followed by the 
Prune function. The Build Cluster function needs relatively the minimum amount of 
time because the values for N, K and I are normally small. In order to confirm the 
results of the theoretical analysis, we tested each function separately on synthesised 
data chunks of different sizes. Fig. 3 illustrates the execution time for each function at 
different chunk sizes for DS1 and DS2 datasets. The test results confirm the 
theoretical analysis results.  
According to this understanding, we configure the 12-core machine in the following 
way: two processors for the Build Cluster function, four processors for the Merge 
function, and three processors for the Prune function (see Section 4.3 for performance 
test results), plus two processors serving as the two central sites. 

 
                                 (a) DS1                                                                          (b) DS2 

Fig. 3. Comparison of execution time among the key functions of EINCKM 



4.2 Dynamic Parallel Pipeline Framework  

The worst-case measure of time complexity does not always reflect the reality. 
Dynamic scheduling of resources based on actual execution of each individual step 
makes more sense in deciding how many processors should be allocated to resolve the 
bottleneck at the time. Therefore, a dynamic parallel pipeline (DPP) framework is 
proposed. In this framework, a minimum number of processors are initially allocated 
as the baseline processors for performing the clustering task. One central processor is 
then designated to the role of scheduler by monitoring occupancy rates of the buffers 
being used by the existing processors. A number of spare processors are held in 
reserve. A spare processor can be assigned to join the baseline processors for a 
specific function by the scheduler according to the need for additional assistance as 
indicated by the level of free buffer memory.  

We encountered two immediate problems: (a) how to select the right number of 
baseline processors, and (b) how to decide if there is a need for allocating additional 
resources. To solve the first problem, we allocate by default one processor for each of 
the three key functions of the algorithm. To solve the second problem, we monitor the 
size of the buffers, decide where the possible bottleneck may occur and then take a 
decision to add/move a processor one at a time. For each iteration, the scheduler 
checks the use of two buffers (Bf1 and Bf2). If the buffer use, i.e. use of the storage 
space of the buffer, is below a minimum threshold (Min_Thr), the buffer is about to 
become empty and hence more processors are needed by the function that outputs into 
the buffer. If the buffer usage is above a maximum threshold (Max_Thr), it means that 
the buffer is about to become full and more processors are needed for the function that 
inputs from the buffer. Fig. 4 shows four decision rules for the two possible situations: 
(a) there are processors in the reserve (assigning a processor), and (b) there are no 
processors in the reserve (moving a processor). 

Dynamic Parallel Pipeline Algorithm:   

Algorithm Steps: 

�� ������������� > 0 �ℎ�
 // (a) First situation when have reserved processors 

  �� �������1� < ��
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_	ℎ� �ℎ�
 "## $�%&���%� �% �'�(# )('����*  

  �(���� �������1� < ��
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 "## $�%&���%� �% ,�'
�*  
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�(��  // (b) Second situation when do not have reserved processors 
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Fig. 4. Dynamic parallel pipeline framework 



4.3 Experimental Results and Discussion  
We used the two collections of datasets to test the performance of the OPP and the 
DPP frameworks. The results in Fig. 5 show that both OPP and DPP are consistently 
faster than the PP framework, confirming that optimised and dynamic allocations of 
processing resources are better than the even distribution of the resources among the 
processing steps. At the same time, the DPP framework performs better than the OPP 
one because the statically allocated processors in OPP does not reflect the dynamic 
reality.  

One issue that affects the performance of the DPP framework is the setting of the 
two thresholds for the buffer use. For the tests presented in Fig. 5, we set Min_Thr = 
20% and Max_Thr = 80%. Setting the range between the two thresholds too low 
means too many scheduling activities for additional resources. Setting the range too 
big means increasing the risk of the buffers being empty or full causing time delay in 
the process. Other factors such as the speed of data arrival and buffer sizes also play a 
role. A proper sensitivity study regarding the thresholds and the search for optimal 
thresholds certainly require further research. 

We also compare the DPP version of the EINCKM algorithm against the BP 
versions of three typical existing algorithms of the same category, i.e. STREAM, 
Adapt.KM [24], and Inc.KM [25]. The results show faster execution time by the 
EINCKM algorithm than that by the Adapt.KM and the Inc.KM algorithms due to the 
dynamic allocations of processing resources to the right place in the EINCKM 
algorithm. The EINCKM algorithm speed is close to that, but slower than that of the 
STREAM algorithm (see Fig. 6). This is mainly because the STREAM algorithm 
does not consider the concept drift issue and nor identify outliers as the EINCKM 
does.  

 
                                     (a) DS1                                                        (b) DS2 

Fig. 5. The ratio between ideal time and the measured parallel frameworks 

 
                                   (a) DS1                (b) DS2 

Fig. 6. Comparison between algorithms 



Regarding the correctness of the output clusters, we confirm that all the five 
versions of parallel EINCKM algorithm produce correct global clusters after the 
whole datasets are processed. We have evidence to demonstrate the correctness of the 
final global cluster models by comparing the output clusters by the algorithms against 
the ground truth clusters in terms of the correctness metrics such as purity, entropy, 
and the sum of square errors measurements. However, because of the constraints of 
the limited space, we are unable to present the evidence here. 

Next generation of online real-time systems required big data platforms to process 
a huge amount of continuously arriving data under computational constraints [26]. 
This kind of systems raises new issues regarding the current big data infrastructures. 
One of the main issues is that most current platforms are not intentionally built to 
consider real-time performance issues. Another main issue is the lack of clear 
computational models for processing big data that could be supported by the current 
frameworks [8]. Recent attempts to address these issues include a study of analysing 
patterns in data stream processing and associating the patterns with performance 
requirements [4], and an effort in improving the computational model for distributed 
stream processing and formalising the model through extensions to the Storm 
framework for real-time application [27]. Our proposed parallel frameworks can be 
considered as another attempt to address the infrastructure issue for real-time 
applications at least on the local individual machine level. The strengths and 
limitations of the proposed framework have not been, but can only be realistically 
evaluated within the context of a large-scale distributed processing environment. 

5 Conclusion and Future Work 

This paper made two main contributions: (a) adapting a newly developed data stream 
clustering algorithm EINCKM to existing parallel frameworks, and (b) developing 
static and dynamic allocation schemes for utilising available processors, both within a 
two-phase learning approach (TPICDS). The adaptation is made easier because the 
algorithm has a modular structure, making it easy to adapt pipeline frameworks. The 
evidence shows that the static and dynamic allocations of processing resources is 
more efficient than simple adaptations.  

 The understandings we take from our work are of two folds. Firstly, there is a 
room to utilising as much as possible the available resources within a single computer 
before we bring in a group of computers to share the workload distributedly. 
Secondly, the two learning approaches for data stream clustering are artificially 
separated. The paper shows that a hybrid way of merging them in a parallel pipeline is 
possible.  

Future work includes an immediate sensitivity analysis for the buffer thresholds 
and more extensive testing of the proposed dynamic parallel pipeline version of the 
EINCKM algorithm, and further improvements to dynamic allocation of resources by 
using more sophisticated techniques including machine learning techniques. Reclaim 
of processors into the reserve should also be considered when the speed of incoming 
data arrival slows down and there is no need to use a large number of processors to 
share out a small amount of workload. Another important work is the integration and 



testing of the dynamic parallel pipeline on a single computer with a distributed 
network environment.  
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