
TPICDS: A Two-phase Parallel Approach for
Incremental Clustering of Data Streams

Ammar Al Abd Alazeez Sabah Jassim Hongbo Du

Department of Applied Computing
The University of Buckingham, Buckingham, MK18 1EG, UK

{1405097,sabah.jassim, hongbo.du}@buckingham.ac.uk

Abstract— Parallel and distributed solutions are essential for clustering data
streams due to the large volumes of data. This paper first examines a direct
adaptation of a recently developed prototype-based algorithm into three existing
parallel frameworks. Based on the evaluation of performance, the paper then
presents a customised pipeline framework that combines incremental and two-
phase learning into a balanced approach that dynamically allocates the available
processing resources. This new framework is evaluated on a collection of
synthetic datasets. The experimental results reveal that the framework not only
produces correct final clusters on the one hand, but also significantly improves
the clustering efficiency.

Keywords-Big Data, Data Stream Clustering Algorithms, Distributed and
Parallel Frameworks

1 Introduction

Recent advances in information and networking technologies and their applications in
almost every sector of life have led to a rapid growth of the massive amount of data
known as Big Data [1]. One of the most important characteristics of big data is its
velocity, which means that data may arrive and require processing at different speeds.
While for some applications, the arrival and processing of data can be performed in an
offline batch processing style, others require continuous and real-time analysis of
collections of incoming data (known as data chunks) ([2][3][4]). Data stream cluster-
ing is defined as a grouping of data in light of frequently arriving new data chunks for
understanding the underlying group patterns that may change over time [5].

It is the sheer volume of data arriving at high and variable speeds of accumulation
that deems normal clustering algorithms inefficient and incapable of dealing with the
demand [6]. Therefore, distributed and parallel algorithms are the ultimate solution
for analysing big data streams in reality, which is evident in the more recent research
work ([4][7][8]). Distributed and parallel solutions offer several benefits such as
reduction of the overall response time, improved scalability of solutions and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BEAR (Buckingham E-Archive of Research)

https://core.ac.uk/display/287785659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

suitability for applications of distributed nature such as sensor networks, social media,
Internet of Things (IoT), etc. [9].

Multi-core processor commodity computers are widely used nowadays. At a higher
but affordable price, a computer can have up to 72 core processors. As the computer
hardware technology advances, cheaper and more core processors will become
available. The question then is how to utilise the available processing resources on
board of a local machine. In this paper, we argue that algorithms for data stream
clustering should be first implemented on a multi-core parallel processing framework
by making the best use of the available processors in a local machine before running
the algorithms in a distributed network of computers.

This paper is therefore concerned with how to parallelise most recent techniques
for clustering data streams. In general, the paper promotes a two-phase parallel
approach for incrementally clustering data streams (TPICDS) where processors will
incrementally maintain local clustering models in parallel at the online phase, and
local cluster models can be merged into a global cluster model at the offline phase. In
particular, the paper investigates the parallelisation of a recent algorithm EINCKM
[10] in the TPICDS framework because of the algorithm’s modular structure and
performance over other existing algorithms. The work consists of two parts. In the
first part, the paper investigates how the EINCKM algorithm adapts three typical
parallelisms in existence. Based on a performance evaluation of the adapted
parallelisms inside the algorithm, the paper further proposes a parallel pipeline with
optimised and dynamic allocations of processing resources. Experimental results
show that the proposed solution not only produces correct final clusters, but also
significantly improves the efficiency.

The rest of this paper is organised as follows. Section 2 explains the related work
on distributed and parallel data stream clustering algorithms in the literature, and
propose the TPICDS approach at the end. Section 3 explains the EINCKM algorithm
adaptation of the existing parallelisms. Section 4 presents the proposed optimised and
dynamic parallel pipelines. Section 5 concludes the work and outlines possible future
directions of this research.

2 Related Work

2.1 Computational Approaches

Two approaches for mining data streams are in existence: incremental and two-phase
learning. With the incremental methods (e.g. STREAM [11]), a global model of clus-
ters is iteratively developed to reflect current modifications made by incoming data
chunks. The two-phase approach (e.g. CluStream [12]) divides the clustering process
into two phases, i.e. an online phase where the data records are summarised into small
intermediate micro-clusters, and an offline phase where the micro-clusters are pro-
cessed into final clusters at a query point [13]. While the incremental algorithms al-
ways provide an accumulated view of global clusters at the arrival point of an incom-
ing data chunk at the expense of continuous clustering, the two-phase algorithms pro-

vide such a view of clusters at the point of the query without constantly finding final
clusters. Therefore, it can be argued that incremental algorithms are more suited for
real-time response systems [4].

2.2 Data Stream Clustering Algorithm EINCKM

EINCKM is a prototype-based algorithm for clustering data streams and identifying
outlier objects [10]. Taking the incremental learning approach, the algorithm divides
the clustering process into three sequential steps: Build Clusters, Merge, and Prune.
Build Clusters uses the K-Means method to find the clusters in the input data chunk.
Merge integrates the newly formed clusters with existing ones. Prune detects outliers
and checks the concept drift using a fading function. The algorithm applies a
heuristic-based method to estimate the number of clusters, a radius-based technique to
merge overlapped clusters, and a variance-based mechanism to prune outliers. The
algorithm is modular and adaptable to further improvements. However, the algorithm
is a sequential algorithm where the three key operations must be performed in order.
It is, therefore, useful to explore how to parallelise the algorithm.

2.3 Distributed and Parallel Frameworks

Depending on how the input data is organised, two categories of distributed and paral-
lel data stream clustering algorithms exist: object-based where the data record is a
complete data object and attribute-based where each data item is an attribute value.
Each category may take either incremental or two-phase learning approach.

For the incremental learning of object-based clusters, the central site receives the
input data streams, divides it into chunks and sends them to the remote sites. Upon
receiving the local clustering models from the remote sites, the central site produces
the final output clusters. Bandyopadhyay et al. have used this approach for clustering
data streams in a peer-to-peer environment [14]. Gao et al. showed an enhanced
Apache Storm framework for clustering social media data, by adding another process
between the central site and the participant remote sites for synchronising changes to
the local models to avoid a bottleneck in communications [15]. Incremental learning
of clusters from attribute streams is similar. The only differences are that each remote
site receives an input attribute stream directly without the central site to distribute the
data and that upon receiving the local cluster models, the central site integrates the
local attribute models into a global object-based cluster model. Rodrigues et al. used
this approach in the ODAC algorithm to cluster attribute streams [16]. The
incremental learning is simple, easy to implement and efficient. However, extensive
communication with the central site can result in bottlenecks. Besides, integrating all
attribute clusters with a central site becomes infeasible when the dimensionality of
data streams are high.

In the two-phase learning of object-based clusters, the local models are saved in a
local buffer memory on each remote site, and are sent to the central site when there is
a query from the user or there are significant changes in the local models [17][18].
However, heavy computation is needed with the central site to obtain the final output

Fig. 1. Proposed TPICDS framework

clusters due to the large number of micro-clusters. Guerrieri and Montresor presented
an improvement by making the remote sites communicate to reduce the number of
micro-clusters [19]. Karunaratne et al. also made an improvement using Apache
Storm where the remote sites save their local clustering models in a globally shared
memory so that the designated second central site processes the local clusters into the
final clusters [19]. The two-phase learning of clusters from attribute streams is similar
to incremental learning by using buffers for local models. Gama et al. adopted this
approach in the DGClust algorithm to cluster data streams in sensor networks [20].
The algorithm reduces data dimensions and hence communications needed.

2.4 The Proposed TPICDS Framework

The proposed framework TPICDS combines the two computational approaches in the
two-phase hybrid system. At the online phase, the first central site receives the data
streams, divides it into chunks, and sends then to the remote sites. Each remote site
receives its own data chunk, creates and maintains its own local cluster models in the
incremental fashion. At the offline phase, the second central site receives the local
models from the remote sites and presents the final global clusters (see Fig. 1). Our
research aims to embed the EINCKM algorithm within the proposed framework
where the second central site uses the same merge strategy to form the global
clustering model.

3 Adapting EINCKM to the Existing Parallelisms

In this section, we first briefly summarise three typical parallel frameworks that
already exist. We then describe how the EINCKM algorithm can intuitively adapt to
each framework. We then evaluate the performance of each adaptation empirically
using synthesised datasets.

3.1 Existing Parallel Frameworks

Three typical parallel frameworks exist. The replication, hereby known as embarrass-
ingly parallel or basic parallelism (BP), simply makes multiple copies of the entire
algorithm and then runs each copy on each processor [21]. Each processor must

complete all operations of the algorithm before receiving next new data inputs. The
framework has the pros of being simple, and directly employs the principle of divide
and conquer by sharing the processing of input data by the available processors. We
use this framework as a basic benchmark for performance evaluations later.

The parallel pipeline (PP) is an improvement of the basic parallelism to streamline
several processors in a pipeline [22], which works as follows. A present processor
receives the output of a previous processor as its input, processes the data, generates
the output, and passes it on to the next processor. Each processor has a certain degree
of independence so that when the next processor processes its output, the present
processor takes and processes its next data input. This framework not only divides the
workload among different processors but also further improve the degree of
parallelism within a sequential pipeline.

MapReduce parallel pipeline (MRPP) is a further modification of PP [23]. First,
data stored in memory are divided into partitions, and each partition is sent to a
different processor (Mapping). Each processor processes the data within the partition
and the processed outputs are then hashed to fewer processors on another layer to
further process them (Reducing). The hashing can be determined by the relevance of
the outputs.

3.2 Algorithm Adaptation

All adaptations of the algorithm to the existing frameworks mentioned above require
dividing the available processing resources into central and remote sites (in this
context, a site is a single core processor on the same computer). The adaptation of the
algorithm to the basic parallelism is straightforward: each remote site finds the
clusters from the incoming chunk, merges them with its own existing clusters, prunes
them, and saves the resulting clusters into its own local buffer memory.

The adaptation of the algorithm to the PP framework is done as follows. We first
divide all the available remote sites into groups of three sites, and then arrange the
three sites into a pipeline. We then designate the first of the three sites for the Build
Clusters function, the second for the Merge function, and the third for the Prune
function. When the Build Cluster site finishes the current chunk, it sends the clusters
to the Merge site. When the Merge site merges the clusters from the chunk with the
existing ones, the Build Cluster site starts discovering clusters from the next chunk.
When the Merge site finishes its task of merging clusters, it sends the results to the
Prune site, and then starts working on the new clusters from the Build Cluster site.
The Prune site works in a similar fashion.

For the adaptation of the MRPP framework, the first central site in TPICDS
performs the mapping operation. The remote sites for the Build Cluster function is
modified to include a further function for the hashing, i.e. assigning similar local
clusters to a specific Merge site. More precisely, a Build Cluster site checks the
closest cluster’s centroids and send them to the same merger site, and a Merge site
receives clusters from different Build Cluster sites to build a regional model of
clustering. After that, the Prune site conducts the pruning of regional models and
sends them to the second central site in TPICDS. The difference between the PP

adaptation and the MRPP adaptationb is that the Merge site in the PP framework
receives clusters only from the Build Cluster site within the same pipeline, whereas
the Merge site in the MRPP merges clusters from more than one Build Cluster site in
different pipelines.

3.3 Empirical Evaluation

In order to evaluate empirically the performance of each adaptation, we created two
collections of synthetic datasets, DS1 and DS2. Each collection include six datasets of
different sizes, i.e. 100,000, 200,000, 500,000, 1,000,000, 1,500,000 and 2,000,000
data points of two dimensions. To simulate various sizes, shapes and numbers of
clusters, we used Gaussian distributions to randomly generate spherical shape clusters
with different means, variances and number of members. DS1 and DS2 respectively
have four and thirty clusters. We acknowledge the limitations of synthesised datasets
in expressing the characteristics of data in reality, but synthesised datasets do allow us
to check the correctness of clustering by comparing the resulting clusters to known
clusters.

A computer with 12 2.8GHz core processors and 16 GB memory under Microsoft
Windows7 was used to conduct the experiment. MATLAB 2017a was used to
implement the adapted algorithms and program the experiment scripts. For each
experiment, we randomly selected data points from the dataset to form data chunks of
1000 data points. The random selection simulates the situation where there is no
control on the order of the arriving data points. To minimise the random effect of the
selected data points to the performance of the algorithms for a specific experiment,
we repeated each experiment 100 times, and then take the average of the speeds of
execution in seconds. The processors on the machine are configured as follows. For
the BP framework, we allocate three processors each of which has the entire
EINCKM algorithm. For the PP and MRPP frameworks, we allocate three processors
(one for Build Cluster, one for Merge, and one for Prune) to form one parallel stream.
We allocate two processors serving as the two central sites in TPICDS. Fig. 2 shows
the performance of the adapted EINCKM algorithms in terms of execution time.

Among the adapted algorithms, the BP adaptation is slower than the PP and
MRPP. The two pipeline adaptations show consistent faster speeds due to the
additional parallelism gained from the pipeline frameworks. However, the MRPP

 (a) DS1 (b) DS2

Fig. 2. Adapted algorithms performance in execution time

adaptation consumes more time than the PP adaptation in mapping and hashing
similar local clusters to a merger. The PP adaptation, however, may still have
potential delays because the processor configuration on each pipeline was fixed, and
some processors within the pipeline may have to wait for the outputs from other
processors. Therefore, optimised and dynamic allocations of processors to the needed
steps should be the right way to further exploit the parallelism.

4 Optimised and Dynamic Parallel Pipeline Frameworks

4.1 An Optimised Parallel Pipeline Framework

The idea behind optimised parallel pipeline (OPP) framework is to decide how many
processors should be statically allocated for each step of the EINCKM algorithm by
analysing the time complexity of the algorithm. The time complexity of the entire
algorithm is estimated by the sum of the time complexity for each of the three key
functions [10]. Let R represent the number of chunks, N the total number of data
points in a chunk plus the outliers, K the number of clusters, I the number of iterations
until the clusters converge, T the number of clusters of the previous iteration, n the
maximum number of data points in a new/existing cluster, k the number of clusters
from a new chunk, and S the number of output clusters of merge function. The time
complexity is ������ for the Build Cluster function, ���	
 + �
�� for the Merge
function, and ���
� for the Prune function. The expressions indicate that the Merge
function takes the longest amount of time in the worst case. This is followed by the
Prune function. The Build Cluster function needs relatively the minimum amount of
time because the values for N, K and I are normally small. In order to confirm the
results of the theoretical analysis, we tested each function separately on synthesised
data chunks of different sizes. Fig. 3 illustrates the execution time for each function at
different chunk sizes for DS1 and DS2 datasets. The test results confirm the
theoretical analysis results.
According to this understanding, we configure the 12-core machine in the following
way: two processors for the Build Cluster function, four processors for the Merge
function, and three processors for the Prune function (see Section 4.3 for performance
test results), plus two processors serving as the two central sites.

 (a) DS1 (b) DS2

Fig. 3. Comparison of execution time among the key functions of EINCKM

4.2 Dynamic Parallel Pipeline Framework

The worst-case measure of time complexity does not always reflect the reality.
Dynamic scheduling of resources based on actual execution of each individual step
makes more sense in deciding how many processors should be allocated to resolve the
bottleneck at the time. Therefore, a dynamic parallel pipeline (DPP) framework is
proposed. In this framework, a minimum number of processors are initially allocated
as the baseline processors for performing the clustering task. One central processor is
then designated to the role of scheduler by monitoring occupancy rates of the buffers
being used by the existing processors. A number of spare processors are held in
reserve. A spare processor can be assigned to join the baseline processors for a
specific function by the scheduler according to the need for additional assistance as
indicated by the level of free buffer memory.

We encountered two immediate problems: (a) how to select the right number of
baseline processors, and (b) how to decide if there is a need for allocating additional
resources. To solve the first problem, we allocate by default one processor for each of
the three key functions of the algorithm. To solve the second problem, we monitor the
size of the buffers, decide where the possible bottleneck may occur and then take a
decision to add/move a processor one at a time. For each iteration, the scheduler
checks the use of two buffers (Bf1 and Bf2). If the buffer use, i.e. use of the storage
space of the buffer, is below a minimum threshold (Min_Thr), the buffer is about to
become empty and hence more processors are needed by the function that outputs into
the buffer. If the buffer usage is above a maximum threshold (Max_Thr), it means that
the buffer is about to become full and more processors are needed for the function that
inputs from the buffer. Fig. 4 shows four decision rules for the two possible situations:
(a) there are processors in the reserve (assigning a processor), and (b) there are no
processors in the reserve (moving a processor).

Dynamic Parallel Pipeline Algorithm:

Algorithm Steps:

�� ������������� > 0 �ℎ�
 // (a) First situation when have reserved processors

 �� �������1� < ��
_	ℎ� & �������2� < ��
_	ℎ� �ℎ�
 "## $�%&���%� �% �'�(#)('����*

 �(���� �������1� < ��
_	ℎ� & �������2� > �"+_	ℎ� �ℎ�
 "## $�%&���%� �% ,�'
�*

 �(���� �������1� > �"+_	ℎ� & �������2� < ��
_	ℎ� �ℎ�
 "## $�%&���%� �% ���-�*

 �(���� �������1� > �"+_	ℎ� & �������2� > �"+_	ℎ� �ℎ�
 "## $�%&���%� �% ,�'
�*/���-�*

�(�� // (b) Second situation when do not have reserved processors

 �� �������1� < ��
_	ℎ� & �������2� < ��
_	ℎ�
 �ℎ�
 �"�� %
� $�%&���%� ��%/ ,�'
�* / ���-�* "
"## �� �% �'�(#)('����*

 �� �������1� < ��
_	ℎ� & �������2� > �"+_	ℎ�
 �ℎ�
 �"�� %
� $�%&���%� ��%/ ���-�* "
"## �� �% ,�'
�*

 �� �������1� > �"+_	ℎ� & �������2� < ��
_	ℎ�
 �ℎ�
 �"�� %
� $�%&���%� ��%/ ,�'
�* "
"## �� �% ���-�*

 �� �������1� > �"+_	ℎ� & �������2� > �"+_	ℎ�
 �ℎ�
 �"�� %
� $�%&���%� ��%/ �'�(#)('����* "
"## �� �% ,�'
�* / ���-�*

Fig. 4. Dynamic parallel pipeline framework

4.3 Experimental Results and Discussion
We used the two collections of datasets to test the performance of the OPP and the
DPP frameworks. The results in Fig. 5 show that both OPP and DPP are consistently
faster than the PP framework, confirming that optimised and dynamic allocations of
processing resources are better than the even distribution of the resources among the
processing steps. At the same time, the DPP framework performs better than the OPP
one because the statically allocated processors in OPP does not reflect the dynamic
reality.

One issue that affects the performance of the DPP framework is the setting of the
two thresholds for the buffer use. For the tests presented in Fig. 5, we set Min_Thr =
20% and Max_Thr = 80%. Setting the range between the two thresholds too low
means too many scheduling activities for additional resources. Setting the range too
big means increasing the risk of the buffers being empty or full causing time delay in
the process. Other factors such as the speed of data arrival and buffer sizes also play a
role. A proper sensitivity study regarding the thresholds and the search for optimal
thresholds certainly require further research.

We also compare the DPP version of the EINCKM algorithm against the BP
versions of three typical existing algorithms of the same category, i.e. STREAM,
Adapt.KM [24], and Inc.KM [25]. The results show faster execution time by the
EINCKM algorithm than that by the Adapt.KM and the Inc.KM algorithms due to the
dynamic allocations of processing resources to the right place in the EINCKM
algorithm. The EINCKM algorithm speed is close to that, but slower than that of the
STREAM algorithm (see Fig. 6). This is mainly because the STREAM algorithm
does not consider the concept drift issue and nor identify outliers as the EINCKM
does.

 (a) DS1 (b) DS2

Fig. 5. The ratio between ideal time and the measured parallel frameworks

 (a) DS1 (b) DS2

Fig. 6. Comparison between algorithms

Regarding the correctness of the output clusters, we confirm that all the five
versions of parallel EINCKM algorithm produce correct global clusters after the
whole datasets are processed. We have evidence to demonstrate the correctness of the
final global cluster models by comparing the output clusters by the algorithms against
the ground truth clusters in terms of the correctness metrics such as purity, entropy,
and the sum of square errors measurements. However, because of the constraints of
the limited space, we are unable to present the evidence here.

Next generation of online real-time systems required big data platforms to process
a huge amount of continuously arriving data under computational constraints [26].
This kind of systems raises new issues regarding the current big data infrastructures.
One of the main issues is that most current platforms are not intentionally built to
consider real-time performance issues. Another main issue is the lack of clear
computational models for processing big data that could be supported by the current
frameworks [8]. Recent attempts to address these issues include a study of analysing
patterns in data stream processing and associating the patterns with performance
requirements [4], and an effort in improving the computational model for distributed
stream processing and formalising the model through extensions to the Storm
framework for real-time application [27]. Our proposed parallel frameworks can be
considered as another attempt to address the infrastructure issue for real-time
applications at least on the local individual machine level. The strengths and
limitations of the proposed framework have not been, but can only be realistically
evaluated within the context of a large-scale distributed processing environment.

5 Conclusion and Future Work

This paper made two main contributions: (a) adapting a newly developed data stream
clustering algorithm EINCKM to existing parallel frameworks, and (b) developing
static and dynamic allocation schemes for utilising available processors, both within a
two-phase learning approach (TPICDS). The adaptation is made easier because the
algorithm has a modular structure, making it easy to adapt pipeline frameworks. The
evidence shows that the static and dynamic allocations of processing resources is
more efficient than simple adaptations.

 The understandings we take from our work are of two folds. Firstly, there is a
room to utilising as much as possible the available resources within a single computer
before we bring in a group of computers to share the workload distributedly.
Secondly, the two learning approaches for data stream clustering are artificially
separated. The paper shows that a hybrid way of merging them in a parallel pipeline is
possible.

Future work includes an immediate sensitivity analysis for the buffer thresholds
and more extensive testing of the proposed dynamic parallel pipeline version of the
EINCKM algorithm, and further improvements to dynamic allocation of resources by
using more sophisticated techniques including machine learning techniques. Reclaim
of processors into the reserve should also be considered when the speed of incoming
data arrival slows down and there is no need to use a large number of processors to
share out a small amount of workload. Another important work is the integration and

testing of the dynamic parallel pipeline on a single computer with a distributed
network environment.

Acknowledgements The first author wishes to thank the University of Mosul and
Government of Iraq/Ministry of Higher Education and Research (MOHESR) for
funding him to conduct this research at the University of Buckingham.

References
[1] C. Liu, R. Ranjan, X. Zhang, C. Yang, D. Georgakopoulos, and J. Chen, “Public Auditing

for Big Data Storage in Cloud Computing -- A Survey,” 2013 IEEE 16th International
Conference on Computational Science and Engineering, pp. 1128–1135, Dec. 2013.

[2] E. Olshannikova, A. Ometov, and Y. Koucheryavy, “Towards Big Data Visualization for
Augmented Reality,” 2014 IEEE 16th Conference on Business Informatics, pp. 33–37,
Jul. 2014.

[3] N. Kaur and S. K. Sood, “Efficient Resource Management System Based on 4Vs of Big
Data Streams,” Journal of Big Data Research, vol. 9, pp. 98–106, 2017.

[4] P. Basanta-Val, N. Fernandez-Garcia, L. Sanchez-Fernandez, and J. Arias-Fisteus,
“Patterns for real-time stream processing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 11, pp. 1–91, 2017.

[5] Yogita and D. Toshniwal, “Clustering Techniques for Streaming Data – A Survey,” 3rd
IEEE International Advance Computing Conference (IACC), pp. 951–956, 2012.

[6] T. S. Sliwinski and S.-L. Kang, “Applying Parallel Computing Techniques to Analyze
Terabyte Atmospheric Boundary Layer Model Outputs,” Journal of Big Data Research,
vol. 7, pp. 31–41, 2017.

[7] I. I. Yusuf, I. E. Thomas, M. Spichkova, and H. W. Schmidt, “Chiminey: Connecting
Scientists to HPC, Cloud and Big Data,” Journal of Big Data Research, vol. 8, pp. 39–49,
2017.

[8] Z. Lv, H. Song, P. Basanta-val, A. Steed, and M. Jo, “Next-Generation Big Data
Analytics : State of the Art, Challenges, and Future Research Topics,” IEEE Transactions
on Industrial Informatics, vol. 13, no. 4, pp. 1891–1899, 2017.

[9] C. C. Aggarwal, Data Streams: Models and Algorithms, Book. Yorktown Hieghts, NY
10598: Kluwer Academic Publishers Boston/Dordrecht/London, 2007.

[10] A. Al Abd Alazeez, S. Jassim, and H. Du, “EINCKM: An Enhanced Prototype-based
Method for Clustering Evolving Data Streams in Big Data,” Proceedings of the 6th
International Conference on Pattern Recognition Applications and Methods, no. Icpram,
pp. 173–183, 2017.

[11] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan, “Clustering Data Streams,” IEEE
FOCS Conference, pp. 359–366, 2000.

[12] C. Aggarwal, J. Han, J. Wang, and P. Yu, “A Framework for Clustering Evolving Data
Streams,” Proceedings of the 29th VLDB Conference, Germany, pp. 1–12, 2003.

[13] J. Silva, E. Faria, R. Barros, E. Hruschka, and A. Carvalho, “Data Stream Clustering : A
Survey,” ACM Computing Surveys (CSUR), pp. 1–37, 2013.

[14] S. Bandyopadhyay, C. Giannella, U. Maulik, H. Kargupta, K. Liu, and S. Datta,
“Clustering distributed data streams in peer-to-peer environments,” ELSVIER, Journal of
Information Sciences, vol. 176, no. 14, pp. 1952–1985, 2006.

[15] X. Gao, E. Ferrara, and J. Qiu, “Parallel Clustering of High-Dimensional Social Media
Data Streams,” arXiv, pp. 323–332, 2015.

[16] P. P. Rodrigues, J. Gama, and J. P. Pedroso, “Hierarchical clustering of time-series data
streams,” IEEE Transactions on Knowledge and Data Engineering, vol. 20, no. 5, pp.
615–627, 2008.

[17] A. Zhou, F. Cao, Y. Yan, C. Sha, and X. He, “Distributed Data Stream Clustering : A Fast
EM-based Approach,” 1-4244-0803-2/07/$20.00 ©2007 IEEE, pp. 736–745, 2007.

[18] M. Y. Yeh, B. R. Dai, and M. S. Chen, “Clustering over multiple evolving streams by
events and correlations,” IEEE Transactions on Knowledge and Data Engineering, vol.
19, no. 10, pp. 1349–1362, 2007.

[19] A. Guerrieri and A. Montresor, “DS-means: Distributed data stream clustering,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), vol. 7484 LNCS, pp. 260–271, 2012.

[20] J. Gama, P. P. Rodrigues, and M. L. Lopes, “Clustering distributed sensor data streams
using local processing and reduced communication,” Intelligent Data Analysis, IOS Press,
vol. 15, no. 1, pp. 3–28, 2011.

[21] M. Talistu, T. S. Moh, and M. Moh, “Gossip-based spectral clustering of distributed data
streams,” High Performance Computing Simulation (HPCS), 2015 International
Conference on, pp. 325–333, 2015.

[22] T. Z. J. Fu, J. Ding, R. T. B. Ma, M. Winslett, Y. Yang, and Z. Zhang, “DRS: Dynamic
Resource Scheduling for Real-Time Analytics over Fast Streams,” Proceedings -
International Conference on Distributed Computing Systems, vol. 2015–July, pp. 411–
420, 2015.

[23] C. Jin, M. A. Patwary, A. Agrawal, W. Hendrix, W. Liao, and A. Choudhary, “DiSC : A
Distributed Single-Linkage Hierarchical Clustering Algorithm using MapReduce,” in
proceedings of the International SC Workshop on Data Intensive Computing in the
Clouds (DataCloud), pp. 1–10, 2013.

[24] S. K. Bhatia and S. Louis, “Adaptive K-Means Clustering,” American Association for
Artificial Intelligence, pp. 1–5, 2004.

[25] S. Chakraborty and N. K. Nagwani, “Analysis and Study of Incremental K-Means,”
Springer-Verlag Berlin Heidelberg, pp. 338–341, 2011.

[26] I. Stoica, “Trends and Challenges in Big Data Processing,” Proceedings of the VLDB
Endowment, vol. 9, no. 13, pp. 1619–1622, 2016.

[27] P. Basanta-Val, N. Fernández-García, A. J. Wellings, and N. C. Audsley, “Improving the
predictability of distributed stream processors,” Future Generation Computer Systems,
vol. 52, pp. 22–36, 2015.

