182 research outputs found

    Mental Health and Wellbeing Implications of the COVID-19 Quarantine for Disabled and Disadvantaged Children and Young People: Evidence from a Cross-cultural Study in Zambia and Sierra Leone

    Get PDF
    Background The mental health impact of the COVID-19 pandemic and quarantining on children and young people (CYP) living in low- and middle-income countries (LMICs) has yet to be fully comprehended. CYP in LMICs are at utmost risk, given the COVID-19-related restrictions and social distancing measures, resulting in reduced access to school-based services for nutritional and mental health needs. This study examined mental health of CYP during the first COVID-19 lockdown in Zambia and Sierra Leone. Method A total of 468 disabled and disadvantaged CYP aged 12 to 25 completed a planning tool that comprised the short Warwick-Edinburgh Mental Wellbeing Scale (SWEMWBS), as well as open-ended questions covering social connectedness, physical distancing and educational challenges during the lockdown. The community coaches screened individuals and families who could be eligible to receive emergency aid, and based on a convenience sample following distribution of aid, recipients were invited to complete the online planning tool. Results The data showed that participants in the global south have increasing anxieties and fears centred on accessing offline educational resources and income loss in the family effecting food security and their ability to return to education. Mean (SD) SWEMWBS scores for all participants in Zambia and Sierra Leone, were 19.61 (3.45) and 21.65 (2.84), respectively. Mental well-being scores were lower in females, children aged 12-14 and participants with two or more disabilities. Factors significantly associated with poor mental wellbeing in the sample were: type of disability, nationality, peer relationships, connection to others during the pandemic, knowledge about COVID-19, worry about the long-term impact of COVID-19, and the types of self-isolating. Conclusion The study shows that participants who self-reported low levels of COVID-19 health literacy also scored low on the mental wellbeing self-assessment. Yet, despite undoubted limited resources, these CYP are doing well in identifying their needs and maintaining hope in the face of the problems associated with COVID-19 in countries where stigma persists around mental ill-health

    Comparing De Novo Genome Assembly: The Long and Short of It

    Get PDF
    Recent advances in DNA sequencing technology and their focal role in Genome Wide Association Studies (GWAS) have rekindled a growing interest in the whole-genome sequence assembly (WGSA) problem, thereby, inundating the field with a plethora of new formalizations, algorithms, heuristics and implementations. And yet, scant attention has been paid to comparative assessments of these assemblers' quality and accuracy. No commonly accepted and standardized method for comparison exists yet. Even worse, widely used metrics to compare the assembled sequences emphasize only size, poorly capturing the contig quality and accuracy. This paper addresses these concerns: it highlights common anomalies in assembly accuracy through a rigorous study of several assemblers, compared under both standard metrics (N50, coverage, contig sizes, etc.) as well as a more comprehensive metric (Feature-Response Curves, FRC) that is introduced here; FRC transparently captures the trade-offs between contigs' quality against their sizes. For this purpose, most of the publicly available major sequence assemblers – both for low-coverage long (Sanger) and high-coverage short (Illumina) reads technologies – are compared. These assemblers are applied to microbial (Escherichia coli, Brucella, Wolbachia, Staphylococcus, Helicobacter) and partial human genome sequences (Chr. Y), using sequence reads of various read-lengths, coverages, accuracies, and with and without mate-pairs. It is hoped that, based on these evaluations, computational biologists will identify innovative sequence assembly paradigms, bioinformaticists will determine promising approaches for developing “next-generation” assemblers, and biotechnologists will formulate more meaningful design desiderata for sequencing technology platforms. A new software tool for computing the FRC metric has been developed and is available through the AMOS open-source consortium

    A 32 kb Critical Region Excluding Y402H in CFH Mediates Risk for Age-Related Macular Degeneration

    Get PDF
    Complement factor H shows very strong association with Age-related Macular Degeneration (AMD), and recent data suggest that multiple causal variants are associated with disease. To refine the location of the disease associated variants, we characterized in detail the structural variation at CFH and its paralogs, including two copy number polymorphisms (CNP), CNP147 and CNP148, and several rare deletions and duplications. Examination of 34 AMD-enriched extended families (N = 293) and AMD cases (White N = 4210 Indian = 134; Malay = 140) and controls (White N = 3229; Indian = 117; Malay = 2390) demonstrated that deletion CNP148 was protective against AMD, independent of SNPs at CFH. Regression analysis of seven common haplotypes showed three haplotypes, H1, H6 and H7, as conferring risk for AMD development. Being the most common haplotype H1 confers the greatest risk by increasing the odds of AMD by 2.75-fold (95% CI = [2.51, 3.01]; p = 8.31×10−109); Caucasian (H6) and Indian-specific (H7) recombinant haplotypes increase the odds of AMD by 1.85-fold (p = 3.52×10−9) and by 15.57-fold (P = 0.007), respectively. We identified a 32-kb region downstream of Y402H (rs1061170), shared by all three risk haplotypes, suggesting that this region may be critical for AMD development. Further analysis showed that two SNPs within the 32 kb block, rs1329428 and rs203687, optimally explain disease association. rs1329428 resides in 20 kb unique sequence block, but rs203687 resides in a 12 kb block that is 89% similar to a noncoding region contained in ΔCNP148. We conclude that causal variation in this region potentially encompasses both regulatory effects at single markers and copy number

    Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors

    Get PDF
    BACKGROUND: Thymidine phosphorylase (TP) is often overexpressed in tumours and has a role in tumour aggressiveness and angiogenesis. Here, we determined whether TP increased tumour invasion and whether TP-expressing cancer cells stimulated angiogenesis. METHODS: Angiogenesis was studied by exposing endothelial cells (HUVECs) to conditioned medium (CM) derived from cancer cells with high (Colo320TP1 = CT-CM, RT112/TP = RT-CM) and no TP expression after which migration (wound-healing-assay) and invasion (transwell-assay) were determined. The involvement of several angiogenic factors were examined by RT-PCR, ELISA and blocking antibodies. RESULTS: Tumour invasion was not dependent on intrinsic TP expression. The CT-CM and RT-CM stimulated HUVEC-migration and invasion by about 15 and 40%, respectively. Inhibition by 10 mu M TPI and 100 mu M L-dR, blocked migration and reduced the invasion by 50-70%. Thymidine phosphorylase activity in HUVECs was increased by CT-CM. Reverse transcription-polymerase chain reaction revealed a higher mRNA expression of bFGF (Colo320TP1), IL-8 (RT112/TP) and TNF-alpha, but not VEGF. Blocking antibodies targeting these factors decreased the migration and invasion that was induced by the CT-CM and RT-CM, except for IL-8 in CT-CM and bFGF in RT-CM. CONCLUSION: In our cell line panels, TP did not increase the tumour invasion, but stimulated the migration and invasion of HUVECs by two different mechanisms. Hence, TP targeting seems to provide a potential additional strategy in the field of anti-angiogenic therapy
    corecore