13 research outputs found

    Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition

    Get PDF
    Antibodies classically bind antigens via their complementarity-determining regions, but an alternative mode of interaction involving V-domain framework regions has been observed for some B cell "superantigens." We report the crystal structure of an antibody employing both modes of interaction simultaneously and binding two antigen molecules. This human antibody from an allergic individual binds to the grass pollen allergen Phl p 7. Not only are two allergen molecules bound to each antibody fragment (Fab) but also each allergen molecule is bound by two Fabs: One epitope is recognized classically, the other in a superantigen-like manner. A single allergen molecule thus cross-links two identical Fabs, contrary to the one-antibody-one-epitope dogma, which dictates that a dimeric allergen at least is required for this to occur. Allergens trigger immediate hypersensitivity reactions by cross-linking receptor-bound IgE molecules on effector cells. We found that monomeric Phl p 7 induced degranulation of basophils sensitized solely with this monoclonal antibody expressed as an IgE, demonstrating that the dual specificity has functional consequences. The monomeric state of Phl p 7 and two structurally related allergens was confirmed by size-exclusion chromatography and multiangle laser light scattering, and the results were supported by degranulation studies with the related allergens, a second patient-derived allergen-specific antibody lacking the nonclassical binding site, and mutagenesis of the nonclassically recognized allergen epitope. The antibody dual reactivity and cross-linking mechanism not only have implications for understanding allergenicity and allergen potency but, importantly, also have broader relevance to antigen recognition by membrane Ig and cross-linking of the B cell receptor

    Structure of a patient-derived antibody in complex with allergen reveals simultaneous conventional and superantigen-like recognition.

    Get PDF
    Antibodies classically bind antigens via their complementarity-determining regions, but an alternative mode of interaction involving V-domain framework regions has been observed for some B cell "superantigens." We report the crystal structure of an antibody employing both modes of interaction simultaneously and binding two antigen molecules. This human antibody from an allergic individual binds to the grass pollen allergen Phl p 7. Not only are two allergen molecules bound to each antibody fragment (Fab) but also each allergen molecule is bound by two Fabs: One epitope is recognized classically, the other in a superantigen-like manner. A single allergen molecule thus cross-links two identical Fabs, contrary to the one-antibody-one-epitope dogma, which dictates that a dimeric allergen at least is required for this to occur. Allergens trigger immediate hypersensitivity reactions by cross-linking receptor-bound IgE molecules on effector cells. We found that monomeric Phl p 7 induced degranulation of basophils sensitized solely with this monoclonal antibody expressed as an IgE, demonstrating that the dual specificity has functional consequences. The monomeric state of Phl p 7 and two structurally related allergens was confirmed by size-exclusion chromatography and multiangle laser light scattering, and the results were supported by degranulation studies with the related allergens, a second patient-derived allergen-specific antibody lacking the nonclassical binding site, and mutagenesis of the nonclassically recognized allergen epitope. The antibody dual reactivity and cross-linking mechanism not only have implications for understanding allergenicity and allergen potency but, importantly, also have broader relevance to antigen recognition by membrane Ig and cross-linking of the B cell receptor.Asthma UK Grant AUK-IG-2016-338; Medical Research Council, UK Grant G1100090; in part by Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma Grant G1000758, Asthma UK Grant AUK-IG-2014-255, and King’s Health Partners Grant R150501; by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St. Thomas’ National Health (NHS) Service Foundation Trust, King’s College London

    Potential Mechanisms for IgG4 Inhibition of Immediate Hypersensitivity Reactions

    Get PDF
    IgG4 is the least abundant IgG subclass in human serum, representing less than 5 % of all IgG. Increases in IgG4 occur following chronic exposure to antigen and are generally associated with states of immune tolerance. In line with this, IgG4 is regarded as an anti-inflammatory antibody with a limited ability to elicit effective immune responses. Furthermore, IgG4 attenuates allergic responses by inhibiting the activity of IgE. The mechanism by which IgG4 inhibits IgE-mediated hypersensitivity has been investigated using a variety of model systems leading to two proposed mechanisms. First by sequestering antigen, IgG4 can function as a blocking antibody, preventing cross-linking of receptor bound IgE. Second IgG4 has been proposed to co-stimulate the inhibitory IgG receptor FcγRIIb, which can negatively regulate FcεRI signaling and in turn inhibit effector cell activation. Recent advances in our understanding of the structural features of human IgG4 have shed light on the unique functional and immunologic properties of IgG4. The aim of this review is to evaluate our current understanding of IgG4 biology and reassess the mechanisms by which IgG4 functions to inhibit IgE-mediated allergic responses

    Protocol for a randomised, double-blind, placebo-controlled study of grass allergen immunotherapy tablet for seasonal allergic rhinitis: time course of nasal, cutaneous and immunological outcomes

    Get PDF
    Seasonal Allergic Rhinitis is characterised by inflammation of the nasal mucosa upon exposure to common aeroallergens, affecting up to 20-25 % of the population. For those patients whose symptoms are not controlled by standard medical treatment, allergen specific immunotherapy is a therapeutic alternative. Although several studies have shown changes in immunologic responses as well as long term tolerance following treatment with a sublingual allergy immunotherapy tablet, a detailed time course of the early mechanistic changes of local and systemic T and B cell responses and the effects on B cell repertoire in the nasal mucosa have not been fully examined.; This is a randomized, double-blind, single-centre, placebo controlled, two arm time course study based in the United Kingdom comparing sublingual allergy immunotherapy tablet (GRAZAX(®), ALK-Abello Horsholm, Denmark) plus standard treatment with placebo plus standard treatment. Up to 50 moderate to severe grass pollen allergic participants will be enrolled to ensure randomisation of at least 44. Further, we shall enrol 20 non-atopic volunteers. Screening will be completed before eligible atopic participants are randomised to one of the two treatment arms in a 1 to 1 ratio. The primary endpoint will be the total nasal symptom score assessed over 60 min following grass pollen nasal allergen challenge after 12 months of treatment. Clinical assessments and/or mechanistic analyses on blood, nasal fluid, brushing and biopsies will be performed at baseline at 1, 2, 3, 4 (coinciding with the peak pollen season), 6 and 12 months of treatment. After 12 months of treatment, unblinding will take place. Those atopic participants receiving active treatment will continue therapy for another 12 months followed by a post treatment phase of 12 months. Assessments and collection of biologic samples from these participants will take place again at 24 and at 36 months from the start of treatment. The 20 healthy, non-atopic controls will undergo screening and one visit only coinciding with the 12 month visit for the atopic participants.; The trial will end in April 2017. The trial is registered with ClinicalTrials.gov and the trial identifying number is NCT02005627.; Primary Registry: ClinicalTrials.gov, Trial Identifying number: NCT02005627, Secondary identifying numbers: EudraCT number: 2013-003732-72 REC: 13/EM/0351, Imperial College London (Sponsor): 13IC0847, Protocol Version 6.0, Date: 16.05.2014
    corecore