59 research outputs found

    Adaptation and Convergent Evolution within the Jamesonia-Eriosorus Complex in High-Elevation Biodiverse Andean Hotspots

    Get PDF
    The recent uplift of the tropical Andes (since the late Pliocene or early Pleistocene) provided extensive ecological opportunity for evolutionary radiations. We test for phylogenetic and morphological evidence of adaptive radiation and convergent evolution to novel habitats (exposed, high-altitude páramo habitats) in the Andean fern genera Jamesonia and Eriosorus. We construct time-calibrated phylogenies for the Jamesonia-Eriosorus clade. We then use recent phylogenetic comparative methods to test for evolutionary transitions among habitats, associations between habitat and leaf morphology, and ecologically driven variation in the rate of morphological evolution. Páramo species (Jamesonia) display morphological adaptations consistent with convergent evolution in response to the demands of a highly exposed environment but these adaptations are associated with microhabitat use rather than the páramo per se. Species that are associated with exposed microhabitats (including Jamesonia and Eriorsorus) are characterized by many but short pinnae per frond whereas species occupying sheltered microhabitats (primarily Eriosorus) have few but long pinnae per frond. Pinnae length declines more rapidly with altitude in sheltered species. Rates of speciation are significantly higher among páramo than non-páramo lineages supporting the hypothesis of adaptation and divergence in the unique Páramo biodiversity hotspot

    The reliability and validity of a Japanese version of symptom checklist 90 revised

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To examine the validity and reliability of a Japanese version of the Symptom Checklist 90 Revised (SCL-90-R (J)).</p> <p>Methods</p> <p>The English SCL-90-R was translated to Japanese and the Japanese version confirmed by back-translation. To determine the factor validity and internal consistency of the nine primary subscales, 460 people from the community completed SCL-90-R(J). Test-retest reliability was examined for 104 outpatients and 124 healthy undergraduate students. The convergent-discriminant validity was determined for 80 inpatients who replied to both SCL-90-R(J) and the Minnesota Multiphasic Personality Inventory (MMPI).</p> <p>Results</p> <p>The correlation coefficients between the nine primary subscales and items were .26 to .78. Cronbach's alpha coefficients were from .76 (Phobic Anxiety) to .86 (Interpersonal Sensitivity). Pearson's correlation coefficients between test-retest scores were from .81 (Psychoticism) to .90 (Somatization) for the outpatients and were from .64 (Phobic Anxiety) to .78 (Paranoid Ideation) for the students. Each of the nine primary subscales correlated well with their corresponding constructs in the MMPI.</p> <p>Conclusion</p> <p>We confirmed the validity and reliability of SCL-90-R(J) for the measurement of individual distress. The nine primary subscales were consistent with the items of the original English version.</p

    Comparative Composition, Diversity and Trophic Ecology of Sediment Macrofauna at Vents, Seeps and Organic Falls

    Get PDF
    Sediments associated with hydrothermal venting, methane seepage and large organic falls such as whale, wood and plant detritus create deep-sea networks of soft-sediment habitats fueled, at least in part, by the oxidation of reduced chemicals. Biological studies at deep-sea vents, seeps and organic falls have looked at macrofaunal taxa, but there has yet to be a systematic comparison of the community-level attributes of sediment macrobenthos in various reducing ecosystems. Here we review key similarities and differences in the sediment-dwelling assemblages of each system with the goals of (1) generating a predictive framework for the exploration and study of newly identified reducing habitats, and (2) identifying taxa and communities that overlap across ecosystems. We show that deep-sea seep, vent and organic-fall sediments are highly heterogeneous. They sustain different geochemical and microbial processes that are reflected in a complex mosaic of habitats inhabited by a mixture of specialist (heterotrophic and symbiont-associated) and background fauna. Community-level comparisons reveal that vent, seep and organic-fall macrofauna are very distinct in terms of composition at the family level, although they share many dominant taxa among these highly sulphidic habitats. Stress gradients are good predictors of macrofaunal diversity at some sites, but habitat heterogeneity and facilitation often modify community structure. The biogeochemical differences across ecosystems and within habitats result in wide differences in organic utilization (i.e., food sources) and in the prevalence of chemosynthesis-derived nutrition. In the Pacific, vents, seeps and organic-falls exhibit distinct macrofaunal assemblages at broad-scales contributing to ß diversity. This has important implications for the conservation of reducing ecosystems, which face growing threats from human activities
    • …
    corecore