109 research outputs found

    Housing system and welfare of buffalo (Bubalus bubalis) cows

    Get PDF
    Twenty-eight buffalo cows were used to evaluate the effect of housing system on a range of behavioural and physiological variables. Fourteen cows were group-housed in a loose open-sided barn with a concrete floor and 10 m2 per head as space allowance (group IS). Fourteen others were group-housed in a similar barn but they could also benefit from an outdoor yard with 500 m2 per head as space allowance, free access to potholes for wallowing and spontaneous vegetation (group TS). Animals were subjected to six sessions of instantaneous scan sampling at 10-day intervals. Behavioural variables were expressed as proportions of subjects observed in each category of posture and activity. Phytohaemagglutinin (PHA) was used to perform a skin test based on non-specific delayed type hypersensitivity, whereas 20 mg of ovalbumin were injected subcutaneously to evaluate humoral immune response. Blood samples for evaluation of cortisol concentration were collected immediately prior to exogenous porcine ACTH injection and 1, 2 and 4 h after. The metabolic status of the animals and milk production were also monitored. The proportion of idling animals was higher in group IS than in group TS (P< 0·001). More IS buffalo cows were observed eating at the manger than TS animals (P< 0·001). A higher proportion of TS animals were observed in the sun (P< 0·001). Grazing and bathing activities were recorded only for TS animals. Our findings suggest that buffalo cows kept in intensive conditions and having no access to ample yards and potholes may extend their periods of idling with negative effects on the state of welfare. Immune responses, metabolite concentrations and milk production were not affected by treatment, whereas cortisol levels were higher in IS animals (P< 0·05). The provision of a housing system similar to natural conditions was able to improve the welfare of buffalo cows as indicated by the expression of some species-specific natural behaviours. Such conditions were also associated with lower adrenal cortex response to ACTH injection, possibly as a consequence of the higher degree of initiative allowed to TS cows

    Multidisciplinary geophysical study of the NE sector of the unstable flank of Etna volcano

    Get PDF
    On volcanic areas, usually characterized by complex structural environments, a lot of independent geophysical studies are usually performed. The non-uniqueness of the geophysical inverse models, the different level of reso- lution and sensitivity of the results spurred us to integrate independent geophysical datasets and results collected on Mt. Etna volcano, in order to obtain more accurate and reliable model interpretation. Mt. Etna volcano is located along the eastern coast of Sicily and it is characterized by a complex structural set- ting. In this region, the general N-S compressive regime related to the Africa – Europe collision interacts with the WNW-ESE extensional regime associated to the Malta Escarpment dynamics, observable along the eastern coast of Sicily. At Mt Etna, a great number of studies concerns the existence of instability phenomena; a general eastward mo- tion of the eastern flank of the volcano has been measured with always increasing detail and its relationship with the eruptive and magmatic activity is being investigated. The unstable flank appears bounded to the north by the E–W-trending Provenzana - Pernicana Fault System and to the SW by the NS Ragalna Fault system. Eastwards, this area is divided by several NW–SE trending faults. Recent studies consider this area as divided into several blocks characterized by different shape and kinematics. Ground deformation studies (GPS and InSAR) define the NE portion of the unstable flank as the most mobile one. In the frame of the MEDiterranean Supersites Volcanoes (MED-SUV) project, ground deformation data (GPS and INSAR), 3D seismicity, seismic tomography and two resistivity model profiles, have been analyzed together, in order to put some constraints on the deep structure of the NE sector of the unstable flank. Seismic data come from the permanent network run by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) - Sezione di Catania, Osservatorio Etneo. Ground deformation data comes from InSAR Permanent Scatterers analyses of different spaceborn sensors. The resistivity models come from a MT survey carried out on the eastern flank of the volcano and consisting of thirty broad-band soundings along N-S and NW-SE oriented profiles. We found that the NE sector of the sliding volume, modeled by ground deformation data inversions and character- ized by the highest displacement velocity, is characterized low resistivity values and it is bounded by two seismic clusters. The northern one is clearly related to the Pernicana fault and it’s not deeper than 3 km b.s.l. while the second one is located southwards, beneath the northern wall of the Valle del Bove, not related to any evident struc- ture at the surface. An evident layer with very reduced seismicity lies at 3 km of depth and well corresponds to the simplified analytic models of a sliding planar surface resulting from GPS data inversions

    Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy)

    Get PDF
    Fluids supplied by stored magma at depth are causal factors of volcanic unrest, as they can cause pressurization/heating of hydrothermal systems. However, evidence for links between hydrothermal pressurization, CO2 emission and volcano seismicity have remained elusive. Here, we use recent (2010−2020) observations at Campi Flegrei caldera (CFc) to show hydrothermal pressure, gas emission and seismicity at CFc share common source areas and well-matching temporal evolutions. We interpret the recent escalation in seismicity and surface gas emissions as caused by pressure-temperature increase at the top of a vertically elongated (0.3–2 km deep) gas front. Using mass (steam) balance considerations, we show hydrothermal pressurization is causing energy transfer from the fluids to the host rocks, ultimately triggering low magnitude earthquakes within a seismogenetic volume containing the hydrothermal system. This mechanism is probably common to other worldwide calderas in similar hydrothermal activity state
    corecore