4 research outputs found

    Blocking Synthesis of the Variant Surface Glycoprotein Coat in Trypanosoma brucei Leads to an Increase in Macrophage Phagocytosis Due to Reduced Clearance of Surface Coat Antibodies

    Get PDF
    The extracellular bloodstream form parasite Trypanosoma brucei is supremely adapted to escape the host innate and adaptive immune system. Evasion is mediated through an antigenically variable Variant Surface Glycoprotein (VSG) coat, which is recycled at extraordinarily high rates. Blocking VSG synthesis triggers a precytokinesis arrest where stalled cells persist for days in vitro with superficially intact VSG coats, but are rapidly cleared within hours in mice. We therefore investigated the role of VSG synthesis in trypanosome phagocytosis by activated mouse macrophages. T. brucei normally effectively evades macrophages, and induction of VSG RNAi resulted in little change in phagocytosis of the arrested cells. Halting VSG synthesis resulted in stalled cells which swam directionally rather than tumbling, with a significant increase in swim velocity. This is possibly a consequence of increased rigidity of the cells due to a restricted surface coat in the absence of VSG synthesis. However if VSG RNAi was induced in the presence of anti-VSG221 antibodies, phagocytosis increased significantly. Blocking VSG synthesis resulted in reduced clearance of anti-VSG antibodies from the trypanosome surface, possibly as a consequence of the changed motility. This was particularly marked in cells in the G2/ M cell cycle stage, where the half-life of anti-VSG antibody increased from 39.3 ± 4.2 seconds to 99.2 ± 15.9 seconds after induction of VSG RNAi. The rates of internalisation of bulk surface VSG, or endocytic markers like transferrin, tomato lectin or dextran were not significantly affected by the VSG synthesis block. Efficient elimination of anti-VSG-antibody complexes from the trypanosome cell surface is therefore essential for trypanosome evasion of macrophages. These experiments highlight the essentiality of high rates of VSG recycling for the rapid removal of host opsonins from the parasite surface, and identify this process as a key parasite virulence factor during a chronic infection

    Mood, Personality, and Behavior Changes During Treatment with Statins: A Case Series

    Get PDF
    Psychiatric adverse drug reactions (ADRs) have been reported with statin use, but the literature regarding statin-associated mood/behavioral changes remains limited. We sought to elicit information germane to natural history and characteristics of central nervous system/behavioral changes in apparent connection with statin and/or cholesterol-lowering drug use, and delineate mechanisms that may bear on an association. Participants (and/or proxies) self-referred with behavioral and/or mood changes in apparent association with statins completed a survey eliciting cholesterol-lowering drug history, character and impact of behavioral/mood effect, time-course of onset and recovery in relation to drug use/modification, co-occurrence of recognized statin-associated ADRs, and factors relevant to ADR causality determination. Naranjo presumptive ADR causality criteria were assessed. Participants (n = 12) reported mood/behavior change that commenced following statin initiation and persisted or progressed with continued use. Reported problems included violent ideation, irritability, depression, and suicide. Problems resolved with drug discontinuation and recurred with rechallenge where attempted. Eight met presumptive criteria for “probable” or “definite” causality; others had additional factors not considered in Naranjo criteria that bear on casual likelihood. (1) Simvastatin 80 mg was followed in 5 days by irritability/depression culminating in suicide in a man in his 40s (Naranjo criteria: possible causality). (2) Simvastatin 10 mg was followed within 2 weeks by depression in a woman in her 50s (probable causality). (3) Atorvastatin 20 mg was followed in ~1 month by depression and irritability/aggression in a male in his 50s (probable causality). (4) Atorvastatin 10 mg was followed in several months by aggression/irritability and depression culminating in suicide in a man in his 40s (possible causality). (5) Fenofibrate + rosuvastatin (unknown dose), later combined with atorvastatin were followed in 1 month by aggression/irritability in a male in his 30s (probable causality). (6) Lovastatin (unknown dose and time-course to reaction) was followed by depression, dyscontrol of bipolar disorder, and suicide attempts in a male in his 40s (possible causality). (7) Atorvastatin 20 mg was followed within 2 weeks by cognitive compromise, and nightmares, depression, and anxiety culminating in suicide in a man in his teens (definite causality). (8) Simvastatin 10 mg was followed (time-course not recalled) by depression, aggression/irritability culminating in suicide in a man in his 60s (possible causality). (9) Simvastatin 20 mg then atorvastatin 10 mg were followed (time-course not provided) by irritability/aggression in a man in his 60s (definite causality). (10) Atorvastatin 10 then 20 then 40 mg were followed shortly after the dose increase by violent ideation and anxiety in a man in his 30s (probable causality). (11) Atorvastatin 20 mg and then simvastatin 20 mg were followed in 2 weeks by aggression/irritability in a man in his 50s (definite causality). (12) Lovastatin, rosuvastatin, atorvastatin, and simvastatin at varying doses were followed as quickly as 1 day by aggression, irritability, and violent ideation in a man in his 40s (definite causality). Most had risk factors for statin ADRs, and co-occurrence of other, recognized statin ADRs. ADRs had implications for marriages, careers, and safety of self and others. These observations support the potential for adverse mood and behavioral change in some individuals with statin use, extend the limited literature on such effects, and provide impetus for further investigation into these presumptive ADRs. Potential mechanisms are reviewed, including hypothesized mechanisms related to oxidative stress and bioenergetics

    The trypanolytic factor of human serum.

    No full text
    African trypanosomes (the prototype of which is Trypanosoma brucei brucei) are protozoan parasites that infect a wide range of mammals. Human blood, unlike the blood of other mammals, has efficient trypanolytic activity, and this needs to be counteracted by these parasites. Resistance to this activity has arisen in two subspecies of Trypanosoma brucei - Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense - allowing these parasites to infect humans, and this results in sleeping sickness in East Africa and West Africa, respectively. Study of the mechanism by which T. b. rhodesiense escapes lysis by human serum led to the identification of an ionic-pore-forming apolipoprotein - known as apolipoprotein L1 - that is associated with high-density-lipoprotein particles in human blood. In this Opinion article, we argue that apolipoprotein L1 is the factor that is responsible for the trypanolytic activity of human serum.Journal ArticleResearch Support, Non-U.S. Gov'tReviewinfo:eu-repo/semantics/publishe
    corecore